1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
//===- WebAssemblyInstrControl.td-WebAssembly control-flow ------*- tablegen -*-
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// WebAssembly control-flow code-gen constructs.
///
//===----------------------------------------------------------------------===//
let Defs = [ARGUMENTS] in {
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
// The condition operand is a boolean value which WebAssembly represents as i32.
defm BR_IF : I<(outs), (ins bb_op:$dst, I32:$cond),
(outs), (ins bb_op:$dst),
[(brcond I32:$cond, bb:$dst)],
"br_if \t$dst, $cond", "br_if \t$dst", 0x0d>;
let isCodeGenOnly = 1 in
defm BR_UNLESS : I<(outs), (ins bb_op:$dst, I32:$cond),
(outs), (ins bb_op:$dst), []>;
let isBarrier = 1 in {
defm BR : NRI<(outs), (ins bb_op:$dst),
[(br bb:$dst)],
"br \t$dst", 0x0c>;
} // isBarrier = 1
} // isBranch = 1, isTerminator = 1, hasCtrlDep = 1
} // Defs = [ARGUMENTS]
def : Pat<(brcond (i32 (setne I32:$cond, 0)), bb:$dst),
(BR_IF bb_op:$dst, I32:$cond)>;
def : Pat<(brcond (i32 (seteq I32:$cond, 0)), bb:$dst),
(BR_UNLESS bb_op:$dst, I32:$cond)>;
let Defs = [ARGUMENTS] in {
// TODO: SelectionDAG's lowering insists on using a pointer as the index for
// jump tables, so in practice we don't ever use BR_TABLE_I64 in wasm32 mode
// currently.
// Set TSFlags{0} to 1 to indicate that the variable_ops are immediates.
// Set TSFlags{1} to 1 to indicate that the immediates represent labels.
// FIXME: this can't inherit from I<> since there is no way to inherit from a
// multiclass and still have the let statements.
let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in {
def BR_TABLE_I32 : NI<(outs), (ins I32:$index, variable_ops),
[(WebAssemblybr_table I32:$index)], 0,
"br_table \t$index", 0x0e> {
let TSFlags{0} = 1;
let TSFlags{1} = 1;
}
def BR_TABLE_I32_S : NI<(outs), (ins I32:$index),
[], 1,
"br_table \t$index", 0x0e> {
let TSFlags{0} = 1;
let TSFlags{1} = 1;
}
def BR_TABLE_I64 : NI<(outs), (ins I64:$index, variable_ops),
[(WebAssemblybr_table I64:$index)], 0,
"br_table \t$index"> {
let TSFlags{0} = 1;
let TSFlags{1} = 1;
}
def BR_TABLE_I64_S : NI<(outs), (ins I64:$index),
[], 1,
"br_table \t$index"> {
let TSFlags{0} = 1;
let TSFlags{1} = 1;
}
} // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1
// This is technically a control-flow instruction, since all it affects is the
// IP.
defm NOP : NRI<(outs), (ins), [], "nop", 0x01>;
// Placemarkers to indicate the start or end of a block or loop scope.
// These use/clobber VALUE_STACK to prevent them from being moved into the
// middle of an expression tree.
let Uses = [VALUE_STACK], Defs = [VALUE_STACK] in {
defm BLOCK : NRI<(outs), (ins Signature:$sig), [], "block \t$sig", 0x02>;
defm LOOP : NRI<(outs), (ins Signature:$sig), [], "loop \t$sig", 0x03>;
// END_BLOCK, END_LOOP, and END_FUNCTION are represented with the same opcode in
// wasm.
defm END_BLOCK : NRI<(outs), (ins), [], "end_block", 0x0b>;
defm END_LOOP : NRI<(outs), (ins), [], "end_loop", 0x0b>;
let isTerminator = 1, isBarrier = 1 in
defm END_FUNCTION : NRI<(outs), (ins), [], "end_function", 0x0b>;
} // Uses = [VALUE_STACK], Defs = [VALUE_STACK]
multiclass RETURN<WebAssemblyRegClass vt> {
defm RETURN_#vt : I<(outs), (ins vt:$val), (outs), (ins),
[(WebAssemblyreturn vt:$val)],
"return \t$val", "return", 0x0f>;
// Equivalent to RETURN_#vt, for use at the end of a function when wasm
// semantics return by falling off the end of the block.
let isCodeGenOnly = 1 in
defm FALLTHROUGH_RETURN_#vt : I<(outs), (ins vt:$val), (outs), (ins), []>;
}
multiclass SIMD_RETURN<ValueType vt> {
defm RETURN_#vt : SIMD_I<(outs), (ins V128:$val), (outs), (ins),
[(WebAssemblyreturn (vt V128:$val))],
"return \t$val", "return", 0x0f>;
// Equivalent to RETURN_#vt, for use at the end of a function when wasm
// semantics return by falling off the end of the block.
let isCodeGenOnly = 1 in
defm FALLTHROUGH_RETURN_#vt : SIMD_I<(outs), (ins V128:$val), (outs), (ins),
[]>;
}
let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in {
let isReturn = 1 in {
defm "": RETURN<I32>;
defm "": RETURN<I64>;
defm "": RETURN<F32>;
defm "": RETURN<F64>;
defm "": RETURN<EXCEPT_REF>;
defm "": SIMD_RETURN<v16i8>;
defm "": SIMD_RETURN<v8i16>;
defm "": SIMD_RETURN<v4i32>;
defm "": SIMD_RETURN<v4f32>;
defm RETURN_VOID : NRI<(outs), (ins), [(WebAssemblyreturn)], "return", 0x0f>;
// This is to RETURN_VOID what FALLTHROUGH_RETURN_#vt is to RETURN_#vt.
let isCodeGenOnly = 1 in
defm FALLTHROUGH_RETURN_VOID : NRI<(outs), (ins), []>;
} // isReturn = 1
defm UNREACHABLE : NRI<(outs), (ins), [(trap)], "unreachable", 0x00>;
} // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1
//===----------------------------------------------------------------------===//
// Exception handling instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasExceptionHandling] in {
// Throwing an exception: throw / rethrow
let isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in {
defm THROW_I32 : I<(outs), (ins i32imm:$tag, I32:$val),
(outs), (ins i32imm:$tag),
[(int_wasm_throw imm:$tag, I32:$val)],
"throw \t$tag, $val", "throw \t$tag",
0x08>;
defm THROW_I64 : I<(outs), (ins i32imm:$tag, I64:$val),
(outs), (ins i32imm:$tag),
[(int_wasm_throw imm:$tag, I64:$val)],
"throw \t$tag, $val", "throw \t$tag",
0x08>;
defm RETHROW : NRI<(outs), (ins bb_op:$dst), [], "rethrow \t$dst", 0x09>;
let isCodeGenOnly = 1 in
// This is used when the destination for rethrow is the caller function. This
// will be converted to a rethrow in CFGStackify.
defm RETHROW_TO_CALLER : NRI<(outs), (ins), [], "rethrow">;
} // isTerminator = 1, hasCtrlDep = 1, isBarrier = 1
// Region within which an exception is caught: try / end_try
let Uses = [VALUE_STACK], Defs = [VALUE_STACK] in {
defm TRY : NRI<(outs), (ins Signature:$sig), [], "try \t$sig", 0x06>;
defm END_TRY : NRI<(outs), (ins), [], "end_try", 0x0b>;
} // Uses = [VALUE_STACK], Defs = [VALUE_STACK]
// Catching an exception: catch / catch_all
let hasCtrlDep = 1 in {
defm CATCH_I32 : I<(outs I32:$dst), (ins i32imm:$tag),
(outs), (ins i32imm:$tag),
[(set I32:$dst, (int_wasm_catch imm:$tag))],
"i32.catch \t$dst, $tag", "i32.catch \t$tag", 0x07>;
defm CATCH_I64 : I<(outs I64:$dst), (ins i32imm:$tag),
(outs), (ins i32imm:$tag),
[(set I64:$dst, (int_wasm_catch imm:$tag))],
"i64.catch \t$dst, $tag", "i64.catch \t$tag", 0x07>;
defm CATCH_ALL : NRI<(outs), (ins), [], "catch_all", 0x05>;
}
// Pseudo instructions: cleanupret / catchret
// They are not return instructions in wasm, but setting 'isReturn' to true as
// in X86 is necessary for computing EH scope membership.
let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
isCodeGenOnly = 1, isReturn = 1 in {
defm CLEANUPRET : NRI<(outs), (ins), [(cleanupret)], "", 0>;
defm CATCHRET : NRI<(outs), (ins bb_op:$dst, bb_op:$from),
[(catchret bb:$dst, bb:$from)], "", 0>;
}
}
} // Defs = [ARGUMENTS]
|