1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
//===------- ShadowCallStack.cpp - Shadow Call Stack pass -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The ShadowCallStack pass instruments function prologs/epilogs to check that
// the return address has not been corrupted during the execution of the
// function. The return address is stored in a 'shadow call stack' addressed
// using the %gs segment register.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace llvm {
void initializeShadowCallStackPass(PassRegistry &);
}
namespace {
class ShadowCallStack : public MachineFunctionPass {
public:
static char ID;
ShadowCallStack() : MachineFunctionPass(ID) {
initializeShadowCallStackPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &Fn) override;
private:
// Do not instrument leaf functions with this many or fewer instructions. The
// shadow call stack instrumented prolog/epilog are slightly race-y reading
// and checking the saved return address, so it is better to not instrument
// functions that have fewer instructions than the instrumented prolog/epilog
// race.
static const size_t SkipLeafInstructions = 3;
};
char ShadowCallStack::ID = 0;
} // end anonymous namespace.
static void addProlog(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL);
static void addPrologLeaf(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL,
MCPhysReg FreeRegister);
static void addEpilog(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB);
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB,
MCPhysReg FreeRegister);
// Generate a longer epilog that only uses r10 when a tailcall branches to r11.
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB);
// Helper function to add ModR/M references for [Seg: Reg + Offset] memory
// accesses
static inline const MachineInstrBuilder &
addSegmentedMem(const MachineInstrBuilder &MIB, MCPhysReg Seg, MCPhysReg Reg,
int Offset = 0) {
return MIB.addReg(Reg).addImm(1).addReg(0).addImm(Offset).addReg(Seg);
}
static void addProlog(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL) {
const MCPhysReg ReturnReg = X86::R10;
const MCPhysReg OffsetReg = X86::R11;
auto MBBI = MBB.begin();
// mov r10, [rsp]
addDirectMem(BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64rm)).addDef(ReturnReg),
X86::RSP);
// xor r11, r11
BuildMI(MBB, MBBI, DL, TII->get(X86::XOR64rr))
.addDef(OffsetReg)
.addReg(OffsetReg, RegState::Undef)
.addReg(OffsetReg, RegState::Undef);
// add QWORD [gs:r11], 8
addSegmentedMem(BuildMI(MBB, MBBI, DL, TII->get(X86::ADD64mi8)), X86::GS,
OffsetReg)
.addImm(8);
// mov r11, [gs:r11]
addSegmentedMem(
BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64rm)).addDef(OffsetReg), X86::GS,
OffsetReg);
// mov [gs:r11], r10
addSegmentedMem(BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64mr)), X86::GS,
OffsetReg)
.addReg(ReturnReg);
}
static void addPrologLeaf(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL,
MCPhysReg FreeRegister) {
// mov REG, [rsp]
addDirectMem(BuildMI(MBB, MBB.begin(), DL, TII->get(X86::MOV64rm))
.addDef(FreeRegister),
X86::RSP);
}
static void addEpilog(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB) {
const DebugLoc &DL = MI.getDebugLoc();
// xor r11, r11
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
.addDef(X86::R11)
.addReg(X86::R11, RegState::Undef)
.addReg(X86::R11, RegState::Undef);
// mov r10, [gs:r11]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R11);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// sub QWORD [gs:r11], 8
// This instruction should not be moved up to avoid a signal race.
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)),
X86::GS, X86::R11)
.addImm(8);
// cmp [rsp], r10
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(X86::R10);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB,
MCPhysReg FreeRegister) {
const DebugLoc &DL = MI.getDebugLoc();
// cmp [rsp], REG
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(FreeRegister);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB) {
const DebugLoc &DL = MI.getDebugLoc();
// xor r10, r10
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
.addDef(X86::R10)
.addReg(X86::R10, RegState::Undef)
.addReg(X86::R10, RegState::Undef);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// sub QWORD [gs:0], 8
// This instruction should not be moved up to avoid a signal race.
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)), X86::GS, 0)
.addImm(8);
// cmp [rsp], r10
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(X86::R10);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
bool ShadowCallStack::runOnMachineFunction(MachineFunction &Fn) {
if (!Fn.getFunction().hasFnAttribute(Attribute::ShadowCallStack) ||
Fn.getFunction().hasFnAttribute(Attribute::Naked))
return false;
if (Fn.empty() || !Fn.getRegInfo().tracksLiveness())
return false;
// FIXME: Skip functions that have r10 or r11 live on entry (r10 can be live
// on entry for parameters with the nest attribute.)
if (Fn.front().isLiveIn(X86::R10) || Fn.front().isLiveIn(X86::R11))
return false;
// FIXME: Skip functions with conditional and r10 tail calls for now.
bool HasReturn = false;
for (auto &MBB : Fn) {
if (MBB.empty())
continue;
const MachineInstr &MI = MBB.instr_back();
if (MI.isReturn())
HasReturn = true;
if (MI.isReturn() && MI.isCall()) {
if (MI.findRegisterUseOperand(X86::EFLAGS))
return false;
// This should only be possible on Windows 64 (see GR64_TC versus
// GR64_TCW64.)
if (MI.findRegisterUseOperand(X86::R10) ||
MI.hasRegisterImplicitUseOperand(X86::R10))
return false;
}
}
if (!HasReturn)
return false;
// For leaf functions:
// 1. Do not instrument very short functions where it would not improve that
// function's security.
// 2. Detect if there is an unused caller-saved register we can reserve to
// hold the return address instead of writing/reading it from the shadow
// call stack.
MCPhysReg LeafFuncRegister = X86::NoRegister;
if (!Fn.getFrameInfo().adjustsStack()) {
size_t InstructionCount = 0;
std::bitset<X86::NUM_TARGET_REGS> UsedRegs;
for (auto &MBB : Fn) {
for (auto &LiveIn : MBB.liveins())
UsedRegs.set(LiveIn.PhysReg);
for (auto &MI : MBB) {
if (!MI.isDebugValue() && !MI.isCFIInstruction() && !MI.isLabel())
InstructionCount++;
for (auto &Op : MI.operands())
if (Op.isReg() && Op.isDef())
UsedRegs.set(Op.getReg());
}
}
if (InstructionCount <= SkipLeafInstructions)
return false;
std::bitset<X86::NUM_TARGET_REGS> CalleeSavedRegs;
const MCPhysReg *CSRegs = Fn.getRegInfo().getCalleeSavedRegs();
for (size_t i = 0; CSRegs[i]; i++)
CalleeSavedRegs.set(CSRegs[i]);
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
for (auto &Reg : X86::GR64_NOSPRegClass.getRegisters()) {
// FIXME: Optimization opportunity: spill/restore a callee-saved register
// if a caller-saved register is unavailable.
if (CalleeSavedRegs.test(Reg))
continue;
bool Used = false;
for (MCSubRegIterator SR(Reg, TRI, true); SR.isValid(); ++SR)
if ((Used = UsedRegs.test(*SR)))
break;
if (!Used) {
LeafFuncRegister = Reg;
break;
}
}
}
const bool LeafFuncOptimization = LeafFuncRegister != X86::NoRegister;
if (LeafFuncOptimization)
// Mark the leaf function register live-in for all MBBs except the entry MBB
for (auto I = ++Fn.begin(), E = Fn.end(); I != E; ++I)
I->addLiveIn(LeafFuncRegister);
MachineBasicBlock &MBB = Fn.front();
const MachineBasicBlock *NonEmpty = MBB.empty() ? MBB.getFallThrough() : &MBB;
const DebugLoc &DL = NonEmpty->front().getDebugLoc();
const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
if (LeafFuncOptimization)
addPrologLeaf(Fn, TII, MBB, DL, LeafFuncRegister);
else
addProlog(Fn, TII, MBB, DL);
MachineBasicBlock *Trap = nullptr;
for (auto &MBB : Fn) {
if (MBB.empty())
continue;
MachineInstr &MI = MBB.instr_back();
if (MI.isReturn()) {
if (!Trap) {
Trap = Fn.CreateMachineBasicBlock();
BuildMI(Trap, MI.getDebugLoc(), TII->get(X86::TRAP));
Fn.push_back(Trap);
}
if (LeafFuncOptimization)
addEpilogLeaf(TII, MBB, MI, *Trap, LeafFuncRegister);
else if (MI.findRegisterUseOperand(X86::R11))
addEpilogOnlyR10(TII, MBB, MI, *Trap);
else
addEpilog(TII, MBB, MI, *Trap);
}
}
return true;
}
INITIALIZE_PASS(ShadowCallStack, "shadow-call-stack", "Shadow Call Stack",
false, false)
FunctionPass *llvm::createShadowCallStackPass() {
return new ShadowCallStack();
}
|