1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
//===-- xray_buffer_queue.cc -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instruementation system.
//
// Defines the interface for a buffer queue implementation.
//
//===----------------------------------------------------------------------===//
#include "xray_buffer_queue.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_posix.h"
#include <memory>
#include <sys/mman.h>
#ifndef MAP_NORESERVE
// no-op on NetBSD (at least), unsupported flag on FreeBSD
#define MAP_NORESERVE 0
#endif
using namespace __xray;
using namespace __sanitizer;
template <class T> static T *allocRaw(size_t N) {
// TODO: Report errors?
// We use MAP_NORESERVE on platforms where it's supported to ensure that the
// pages we're allocating for XRay never end up in pages that can be swapped
// in/out. We're doing this because for FDR mode, we want to ensure that
// writes to the buffers stay resident in memory to prevent XRay itself from
// causing swapping/thrashing.
//
// In the case when XRay pages cannot be swapped in/out or there's not enough
// RAM to back these pages, we're willing to cause a segmentation fault
// instead of introducing latency in the measurement. We assume here that
// there are enough pages that are swappable in/out outside of the buffers
// being used by FDR mode (which are bounded and configurable anyway) to allow
// us to keep using always-resident memory.
//
// TODO: Make this configurable?
void *A = reinterpret_cast<void *>(
internal_mmap(NULL, N * sizeof(T), PROT_WRITE | PROT_READ,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0));
return (A == MAP_FAILED) ? nullptr : reinterpret_cast<T *>(A);
}
template <class T> static void deallocRaw(T *ptr, size_t N) {
// TODO: Report errors?
if (ptr != nullptr)
internal_munmap(ptr, N);
}
template <class T> static T *initArray(size_t N) {
auto A = allocRaw<T>(N);
if (A != nullptr)
while (N > 0)
new (A + (--N)) T();
return A;
}
BufferQueue::BufferQueue(size_t B, size_t N, bool &Success)
: BufferSize(B), Buffers(initArray<BufferQueue::BufferRep>(N)),
BufferCount(N), Finalizing{0}, OwnedBuffers(initArray<void *>(N)),
Next(Buffers), First(Buffers), LiveBuffers(0) {
if (Buffers == nullptr) {
Success = false;
return;
}
if (OwnedBuffers == nullptr) {
// Clean up the buffers we've already allocated.
for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
B->~BufferRep();
deallocRaw(Buffers, N);
Success = false;
return;
};
for (size_t i = 0; i < N; ++i) {
auto &T = Buffers[i];
void *Tmp = allocRaw<char>(BufferSize);
if (Tmp == nullptr) {
Success = false;
return;
}
auto *Extents = allocRaw<BufferExtents>(1);
if (Extents == nullptr) {
Success = false;
return;
}
auto &Buf = T.Buff;
Buf.Data = Tmp;
Buf.Size = B;
Buf.Extents = Extents;
OwnedBuffers[i] = Tmp;
}
Success = true;
}
BufferQueue::ErrorCode BufferQueue::getBuffer(Buffer &Buf) {
if (atomic_load(&Finalizing, memory_order_acquire))
return ErrorCode::QueueFinalizing;
SpinMutexLock Guard(&Mutex);
if (LiveBuffers == BufferCount)
return ErrorCode::NotEnoughMemory;
auto &T = *Next;
auto &B = T.Buff;
Buf = B;
T.Used = true;
++LiveBuffers;
if (++Next == (Buffers + BufferCount))
Next = Buffers;
return ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::releaseBuffer(Buffer &Buf) {
// Blitz through the buffers array to find the buffer.
bool Found = false;
for (auto I = OwnedBuffers, E = OwnedBuffers + BufferCount; I != E; ++I) {
if (*I == Buf.Data) {
Found = true;
break;
}
}
if (!Found)
return ErrorCode::UnrecognizedBuffer;
SpinMutexLock Guard(&Mutex);
// This points to a semantic bug, we really ought to not be releasing more
// buffers than we actually get.
if (LiveBuffers == 0)
return ErrorCode::NotEnoughMemory;
// Now that the buffer has been released, we mark it as "used".
First->Buff = Buf;
First->Used = true;
Buf.Data = nullptr;
Buf.Size = 0;
--LiveBuffers;
if (++First == (Buffers + BufferCount))
First = Buffers;
return ErrorCode::Ok;
}
BufferQueue::ErrorCode BufferQueue::finalize() {
if (atomic_exchange(&Finalizing, 1, memory_order_acq_rel))
return ErrorCode::QueueFinalizing;
return ErrorCode::Ok;
}
BufferQueue::~BufferQueue() {
for (auto I = Buffers, E = Buffers + BufferCount; I != E; ++I) {
auto &T = *I;
auto &Buf = T.Buff;
deallocRaw(Buf.Data, Buf.Size);
deallocRaw(Buf.Extents, 1);
}
for (auto B = Buffers, E = Buffers + BufferCount; B != E; ++B)
B->~BufferRep();
deallocRaw(Buffers, BufferCount);
deallocRaw(OwnedBuffers, BufferCount);
}
|