1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
//===-- xray_function_call_trie.h ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This file defines the interface for a function call trie.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_FUNCTION_CALL_TRIE_H
#define XRAY_FUNCTION_CALL_TRIE_H
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "xray_profiling_flags.h"
#include "xray_segmented_array.h"
#include <memory> // For placement new.
#include <utility>
namespace __xray {
/// A FunctionCallTrie represents the stack traces of XRay instrumented
/// functions that we've encountered, where a node corresponds to a function and
/// the path from the root to the node its stack trace. Each node in the trie
/// will contain some useful values, including:
///
/// * The cumulative amount of time spent in this particular node/stack.
/// * The number of times this stack has appeared.
/// * A histogram of latencies for that particular node.
///
/// Each node in the trie will also contain a list of callees, represented using
/// a Array<NodeIdPair> -- each NodeIdPair instance will contain the function
/// ID of the callee, and a pointer to the node.
///
/// If we visualise this data structure, we'll find the following potential
/// representation:
///
/// [function id node] -> [callees] [cumulative time]
/// [call counter] [latency histogram]
///
/// As an example, when we have a function in this pseudocode:
///
/// func f(N) {
/// g()
/// h()
/// for i := 1..N { j() }
/// }
///
/// We may end up with a trie of the following form:
///
/// f -> [ g, h, j ] [...] [1] [...]
/// g -> [ ... ] [...] [1] [...]
/// h -> [ ... ] [...] [1] [...]
/// j -> [ ... ] [...] [N] [...]
///
/// If for instance the function g() called j() like so:
///
/// func g() {
/// for i := 1..10 { j() }
/// }
///
/// We'll find the following updated trie:
///
/// f -> [ g, h, j ] [...] [1] [...]
/// g -> [ j' ] [...] [1] [...]
/// h -> [ ... ] [...] [1] [...]
/// j -> [ ... ] [...] [N] [...]
/// j' -> [ ... ] [...] [10] [...]
///
/// Note that we'll have a new node representing the path `f -> g -> j'` with
/// isolated data. This isolation gives us a means of representing the stack
/// traces as a path, as opposed to a key in a table. The alternative
/// implementation here would be to use a separate table for the path, and use
/// hashes of the path as an identifier to accumulate the information. We've
/// moved away from this approach as it takes a lot of time to compute the hash
/// every time we need to update a function's call information as we're handling
/// the entry and exit events.
///
/// This approach allows us to maintain a shadow stack, which represents the
/// currently executing path, and on function exits quickly compute the amount
/// of time elapsed from the entry, then update the counters for the node
/// already represented in the trie. This necessitates an efficient
/// representation of the various data structures (the list of callees must be
/// cache-aware and efficient to look up, and the histogram must be compact and
/// quick to update) to enable us to keep the overheads of this implementation
/// to the minimum.
class FunctionCallTrie {
public:
struct Node;
// We use a NodeIdPair type instead of a std::pair<...> to not rely on the
// standard library types in this header.
struct NodeIdPair {
Node *NodePtr;
int32_t FId;
// Constructor for inplace-construction.
NodeIdPair(Node *N, int32_t F) : NodePtr(N), FId(F) {}
};
using NodeIdPairArray = Array<NodeIdPair>;
using NodeIdPairAllocatorType = NodeIdPairArray::AllocatorType;
// A Node in the FunctionCallTrie gives us a list of callees, the cumulative
// number of times this node actually appeared, the cumulative amount of time
// for this particular node including its children call times, and just the
// local time spent on this node. Each Node will have the ID of the XRay
// instrumented function that it is associated to.
struct Node {
Node *Parent;
NodeIdPairArray Callees;
int64_t CallCount;
int64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
int32_t FId;
// We add a constructor here to allow us to inplace-construct through
// Array<...>'s AppendEmplace.
Node(Node *P, NodeIdPairAllocatorType &A, int64_t CC, int64_t CLT,
int32_t F)
: Parent(P), Callees(A), CallCount(CC), CumulativeLocalTime(CLT),
FId(F) {}
// TODO: Include the compact histogram.
};
private:
struct ShadowStackEntry {
uint64_t EntryTSC;
Node *NodePtr;
// We add a constructor here to allow us to inplace-construct through
// Array<...>'s AppendEmplace.
ShadowStackEntry(uint64_t T, Node *N) : EntryTSC{T}, NodePtr{N} {}
};
using NodeArray = Array<Node>;
using RootArray = Array<Node *>;
using ShadowStackArray = Array<ShadowStackEntry>;
public:
// We collate the allocators we need into a single struct, as a convenience to
// allow us to initialize these as a group.
struct Allocators {
using NodeAllocatorType = NodeArray::AllocatorType;
using RootAllocatorType = RootArray::AllocatorType;
using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
NodeAllocatorType *NodeAllocator = nullptr;
RootAllocatorType *RootAllocator = nullptr;
ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
Allocators() {}
Allocators(const Allocators &) = delete;
Allocators &operator=(const Allocators &) = delete;
Allocators(Allocators &&O)
: NodeAllocator(O.NodeAllocator), RootAllocator(O.RootAllocator),
ShadowStackAllocator(O.ShadowStackAllocator),
NodeIdPairAllocator(O.NodeIdPairAllocator) {
O.NodeAllocator = nullptr;
O.RootAllocator = nullptr;
O.ShadowStackAllocator = nullptr;
O.NodeIdPairAllocator = nullptr;
}
Allocators &operator=(Allocators &&O) {
{
auto Tmp = O.NodeAllocator;
O.NodeAllocator = this->NodeAllocator;
this->NodeAllocator = Tmp;
}
{
auto Tmp = O.RootAllocator;
O.RootAllocator = this->RootAllocator;
this->RootAllocator = Tmp;
}
{
auto Tmp = O.ShadowStackAllocator;
O.ShadowStackAllocator = this->ShadowStackAllocator;
this->ShadowStackAllocator = Tmp;
}
{
auto Tmp = O.NodeIdPairAllocator;
O.NodeIdPairAllocator = this->NodeIdPairAllocator;
this->NodeIdPairAllocator = Tmp;
}
return *this;
}
~Allocators() {
// Note that we cannot use delete on these pointers, as they need to be
// returned to the sanitizer_common library's internal memory tracking
// system.
if (NodeAllocator != nullptr) {
NodeAllocator->~NodeAllocatorType();
InternalFree(NodeAllocator);
NodeAllocator = nullptr;
}
if (RootAllocator != nullptr) {
RootAllocator->~RootAllocatorType();
InternalFree(RootAllocator);
RootAllocator = nullptr;
}
if (ShadowStackAllocator != nullptr) {
ShadowStackAllocator->~ShadowStackAllocatorType();
InternalFree(ShadowStackAllocator);
ShadowStackAllocator = nullptr;
}
if (NodeIdPairAllocator != nullptr) {
NodeIdPairAllocator->~NodeIdPairAllocatorType();
InternalFree(NodeIdPairAllocator);
NodeIdPairAllocator = nullptr;
}
}
};
// TODO: Support configuration of options through the arguments.
static Allocators InitAllocators() {
return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
}
static Allocators InitAllocatorsCustom(uptr Max) {
Allocators A;
auto NodeAllocator = reinterpret_cast<Allocators::NodeAllocatorType *>(
InternalAlloc(sizeof(Allocators::NodeAllocatorType)));
new (NodeAllocator) Allocators::NodeAllocatorType(Max);
A.NodeAllocator = NodeAllocator;
auto RootAllocator = reinterpret_cast<Allocators::RootAllocatorType *>(
InternalAlloc(sizeof(Allocators::RootAllocatorType)));
new (RootAllocator) Allocators::RootAllocatorType(Max);
A.RootAllocator = RootAllocator;
auto ShadowStackAllocator =
reinterpret_cast<Allocators::ShadowStackAllocatorType *>(
InternalAlloc(sizeof(Allocators::ShadowStackAllocatorType)));
new (ShadowStackAllocator) Allocators::ShadowStackAllocatorType(Max);
A.ShadowStackAllocator = ShadowStackAllocator;
auto NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
InternalAlloc(sizeof(NodeIdPairAllocatorType)));
new (NodeIdPairAllocator) NodeIdPairAllocatorType(Max);
A.NodeIdPairAllocator = NodeIdPairAllocator;
return A;
}
private:
NodeArray Nodes;
RootArray Roots;
ShadowStackArray ShadowStack;
NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
public:
explicit FunctionCallTrie(const Allocators &A)
: Nodes(*A.NodeAllocator), Roots(*A.RootAllocator),
ShadowStack(*A.ShadowStackAllocator),
NodeIdPairAllocator(A.NodeIdPairAllocator) {}
void enterFunction(const int32_t FId, uint64_t TSC) {
DCHECK_NE(FId, 0);
// This function primarily deals with ensuring that the ShadowStack is
// consistent and ready for when an exit event is encountered.
if (UNLIKELY(ShadowStack.empty())) {
auto NewRoot =
Nodes.AppendEmplace(nullptr, *NodeIdPairAllocator, 0, 0, FId);
if (UNLIKELY(NewRoot == nullptr))
return;
Roots.Append(NewRoot);
ShadowStack.AppendEmplace(TSC, NewRoot);
return;
}
auto &Top = ShadowStack.back();
auto TopNode = Top.NodePtr;
DCHECK_NE(TopNode, nullptr);
// If we've seen this callee before, then we just access that node and place
// that on the top of the stack.
auto Callee = TopNode->Callees.find_element(
[FId](const NodeIdPair &NR) { return NR.FId == FId; });
if (Callee != nullptr) {
CHECK_NE(Callee->NodePtr, nullptr);
ShadowStack.AppendEmplace(TSC, Callee->NodePtr);
return;
}
// This means we've never seen this stack before, create a new node here.
auto NewNode =
Nodes.AppendEmplace(TopNode, *NodeIdPairAllocator, 0, 0, FId);
if (UNLIKELY(NewNode == nullptr))
return;
DCHECK_NE(NewNode, nullptr);
TopNode->Callees.AppendEmplace(NewNode, FId);
ShadowStack.AppendEmplace(TSC, NewNode);
DCHECK_NE(ShadowStack.back().NodePtr, nullptr);
return;
}
void exitFunction(int32_t FId, uint64_t TSC) {
// When we exit a function, we look up the ShadowStack to see whether we've
// entered this function before. We do as little processing here as we can,
// since most of the hard work would have already been done at function
// entry.
uint64_t CumulativeTreeTime = 0;
while (!ShadowStack.empty()) {
const auto &Top = ShadowStack.back();
auto TopNode = Top.NodePtr;
DCHECK_NE(TopNode, nullptr);
auto LocalTime = TSC - Top.EntryTSC;
TopNode->CallCount++;
TopNode->CumulativeLocalTime += LocalTime - CumulativeTreeTime;
CumulativeTreeTime += LocalTime;
ShadowStack.trim(1);
// TODO: Update the histogram for the node.
if (TopNode->FId == FId)
break;
}
}
const RootArray &getRoots() const { return Roots; }
// The deepCopyInto operation will update the provided FunctionCallTrie by
// re-creating the contents of this particular FunctionCallTrie in the other
// FunctionCallTrie. It will do this using a Depth First Traversal from the
// roots, and while doing so recreating the traversal in the provided
// FunctionCallTrie.
//
// This operation will *not* destroy the state in `O`, and thus may cause some
// duplicate entries in `O` if it is not empty.
//
// This function is *not* thread-safe, and may require external
// synchronisation of both "this" and |O|.
//
// This function must *not* be called with a non-empty FunctionCallTrie |O|.
void deepCopyInto(FunctionCallTrie &O) const {
DCHECK(O.getRoots().empty());
// We then push the root into a stack, to use as the parent marker for new
// nodes we push in as we're traversing depth-first down the call tree.
struct NodeAndParent {
FunctionCallTrie::Node *Node;
FunctionCallTrie::Node *NewNode;
};
using Stack = Array<NodeAndParent>;
typename Stack::AllocatorType StackAllocator(
profilingFlags()->stack_allocator_max);
Stack DFSStack(StackAllocator);
for (const auto Root : getRoots()) {
// Add a node in O for this root.
auto NewRoot = O.Nodes.AppendEmplace(
nullptr, *O.NodeIdPairAllocator, Root->CallCount,
Root->CumulativeLocalTime, Root->FId);
// Because we cannot allocate more memory we should bail out right away.
if (UNLIKELY(NewRoot == nullptr))
return;
O.Roots.Append(NewRoot);
// TODO: Figure out what to do if we fail to allocate any more stack
// space. Maybe warn or report once?
DFSStack.AppendEmplace(Root, NewRoot);
while (!DFSStack.empty()) {
NodeAndParent NP = DFSStack.back();
DCHECK_NE(NP.Node, nullptr);
DCHECK_NE(NP.NewNode, nullptr);
DFSStack.trim(1);
for (const auto Callee : NP.Node->Callees) {
auto NewNode = O.Nodes.AppendEmplace(
NP.NewNode, *O.NodeIdPairAllocator, Callee.NodePtr->CallCount,
Callee.NodePtr->CumulativeLocalTime, Callee.FId);
if (UNLIKELY(NewNode == nullptr))
return;
NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId);
DFSStack.AppendEmplace(Callee.NodePtr, NewNode);
}
}
}
}
// The mergeInto operation will update the provided FunctionCallTrie by
// traversing the current trie's roots and updating (i.e. merging) the data in
// the nodes with the data in the target's nodes. If the node doesn't exist in
// the provided trie, we add a new one in the right position, and inherit the
// data from the original (current) trie, along with all its callees.
//
// This function is *not* thread-safe, and may require external
// synchronisation of both "this" and |O|.
void mergeInto(FunctionCallTrie &O) const {
struct NodeAndTarget {
FunctionCallTrie::Node *OrigNode;
FunctionCallTrie::Node *TargetNode;
};
using Stack = Array<NodeAndTarget>;
typename Stack::AllocatorType StackAllocator(
profilingFlags()->stack_allocator_max);
Stack DFSStack(StackAllocator);
for (const auto Root : getRoots()) {
Node *TargetRoot = nullptr;
auto R = O.Roots.find_element(
[&](const Node *Node) { return Node->FId == Root->FId; });
if (R == nullptr) {
TargetRoot = O.Nodes.AppendEmplace(nullptr, *O.NodeIdPairAllocator, 0,
0, Root->FId);
if (UNLIKELY(TargetRoot == nullptr))
return;
O.Roots.Append(TargetRoot);
} else {
TargetRoot = *R;
}
DFSStack.Append(NodeAndTarget{Root, TargetRoot});
while (!DFSStack.empty()) {
NodeAndTarget NT = DFSStack.back();
DCHECK_NE(NT.OrigNode, nullptr);
DCHECK_NE(NT.TargetNode, nullptr);
DFSStack.trim(1);
// TODO: Update the histogram as well when we have it ready.
NT.TargetNode->CallCount += NT.OrigNode->CallCount;
NT.TargetNode->CumulativeLocalTime += NT.OrigNode->CumulativeLocalTime;
for (const auto Callee : NT.OrigNode->Callees) {
auto TargetCallee = NT.TargetNode->Callees.find_element(
[&](const FunctionCallTrie::NodeIdPair &C) {
return C.FId == Callee.FId;
});
if (TargetCallee == nullptr) {
auto NewTargetNode = O.Nodes.AppendEmplace(
NT.TargetNode, *O.NodeIdPairAllocator, 0, 0, Callee.FId);
if (UNLIKELY(NewTargetNode == nullptr))
return;
TargetCallee =
NT.TargetNode->Callees.AppendEmplace(NewTargetNode, Callee.FId);
}
DFSStack.AppendEmplace(Callee.NodePtr, TargetCallee->NodePtr);
}
}
}
}
};
} // namespace __xray
#endif // XRAY_FUNCTION_CALL_TRIE_H
|