1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
//===-- xray_segmented_array.h ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the implementation of a segmented array, with fixed-size segments
// backing the segments.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_SEGMENTED_ARRAY_H
#define XRAY_SEGMENTED_ARRAY_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "xray_allocator.h"
#include "xray_utils.h"
#include <cassert>
#include <type_traits>
#include <utility>
namespace __xray {
/// The Array type provides an interface similar to std::vector<...> but does
/// not shrink in size. Once constructed, elements can be appended but cannot be
/// removed. The implementation is heavily dependent on the contract provided by
/// the Allocator type, in that all memory will be released when the Allocator
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
struct SegmentBase {
SegmentBase *Prev;
SegmentBase *Next;
};
// We want each segment of the array to be cache-line aligned, and elements of
// the array be offset from the beginning of the segment.
struct Segment : SegmentBase {
char Data[1];
};
public:
// Each segment of the array will be laid out with the following assumptions:
//
// - Each segment will be on a cache-line address boundary (kCacheLineSize
// aligned).
//
// - The elements will be accessed through an aligned pointer, dependent on
// the alignment of T.
//
// - Each element is at least two-pointers worth from the beginning of the
// Segment, aligned properly, and the rest of the elements are accessed
// through appropriate alignment.
//
// We then compute the size of the segment to follow this logic:
//
// - Compute the number of elements that can fit within
// kCacheLineSize-multiple segments, minus the size of two pointers.
//
// - Request cacheline-multiple sized elements from the allocator.
static constexpr size_t AlignedElementStorageSize =
sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);
static constexpr size_t SegmentSize =
nearest_boundary(sizeof(Segment) + next_pow2(sizeof(T)), kCacheLineSize);
using AllocatorType = Allocator<SegmentSize>;
static constexpr size_t ElementsPerSegment =
(SegmentSize - sizeof(Segment)) / next_pow2(sizeof(T));
static_assert(ElementsPerSegment > 0,
"Must have at least 1 element per segment.");
static SegmentBase SentinelSegment;
private:
AllocatorType *Alloc;
SegmentBase *Head = &SentinelSegment;
SegmentBase *Tail = &SentinelSegment;
size_t Size = 0;
// Here we keep track of segments in the freelist, to allow us to re-use
// segments when elements are trimmed off the end.
SegmentBase *Freelist = &SentinelSegment;
Segment *NewSegment() {
// We need to handle the case in which enough elements have been trimmed to
// allow us to re-use segments we've allocated before. For this we look into
// the Freelist, to see whether we need to actually allocate new blocks or
// just re-use blocks we've already seen before.
if (Freelist != &SentinelSegment) {
auto *FreeSegment = Freelist;
Freelist = FreeSegment->Next;
FreeSegment->Next = &SentinelSegment;
Freelist->Prev = &SentinelSegment;
return static_cast<Segment *>(FreeSegment);
}
auto SegmentBlock = Alloc->Allocate();
if (SegmentBlock.Data == nullptr)
return nullptr;
// Placement-new the Segment element at the beginning of the SegmentBlock.
auto S = reinterpret_cast<Segment *>(SegmentBlock.Data);
new (S) SegmentBase{&SentinelSegment, &SentinelSegment};
return S;
}
Segment *InitHeadAndTail() {
DCHECK_EQ(Head, &SentinelSegment);
DCHECK_EQ(Tail, &SentinelSegment);
auto Segment = NewSegment();
if (Segment == nullptr)
return nullptr;
DCHECK_EQ(Segment->Next, &SentinelSegment);
DCHECK_EQ(Segment->Prev, &SentinelSegment);
Head = Tail = static_cast<SegmentBase *>(Segment);
return Segment;
}
Segment *AppendNewSegment() {
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_EQ(S->Next, &SentinelSegment);
Tail->Next = S;
S->Prev = Tail;
Tail = S;
return static_cast<Segment *>(Tail);
}
// This Iterator models a BidirectionalIterator.
template <class U> class Iterator {
SegmentBase *S = &SentinelSegment;
size_t Offset = 0;
size_t Size = 0;
public:
Iterator(SegmentBase *IS, size_t Off, size_t S)
: S(IS), Offset(Off), Size(S) {}
Iterator(const Iterator &) noexcept = default;
Iterator() noexcept = default;
Iterator(Iterator &&) noexcept = default;
Iterator &operator=(const Iterator &) = default;
Iterator &operator=(Iterator &&) = default;
~Iterator() = default;
Iterator &operator++() {
if (++Offset % ElementsPerSegment || Offset == Size)
return *this;
// At this point, we know that Offset % N == 0, so we must advance the
// segment pointer.
DCHECK_EQ(Offset % ElementsPerSegment, 0);
DCHECK_NE(Offset, Size);
DCHECK_NE(S, &SentinelSegment);
DCHECK_NE(S->Next, &SentinelSegment);
S = S->Next;
DCHECK_NE(S, &SentinelSegment);
return *this;
}
Iterator &operator--() {
DCHECK_NE(S, &SentinelSegment);
DCHECK_GT(Offset, 0);
auto PreviousOffset = Offset--;
if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) {
DCHECK_NE(S->Prev, &SentinelSegment);
S = S->Prev;
}
return *this;
}
Iterator operator++(int) {
Iterator Copy(*this);
++(*this);
return Copy;
}
Iterator operator--(int) {
Iterator Copy(*this);
--(*this);
return Copy;
}
template <class V, class W>
friend bool operator==(const Iterator<V> &L, const Iterator<W> &R) {
return L.S == R.S && L.Offset == R.Offset;
}
template <class V, class W>
friend bool operator!=(const Iterator<V> &L, const Iterator<W> &R) {
return !(L == R);
}
U &operator*() const {
DCHECK_NE(S, &SentinelSegment);
auto RelOff = Offset % ElementsPerSegment;
// We need to compute the character-aligned pointer, offset from the
// segment's Data location to get the element in the position of Offset.
auto Base = static_cast<Segment *>(S)->Data;
auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
return *reinterpret_cast<U *>(AlignedOffset);
}
U *operator->() const { return &(**this); }
};
public:
explicit Array(AllocatorType &A) : Alloc(&A) {}
Array(const Array &) = delete;
Array(Array &&O) NOEXCEPT : Alloc(O.Alloc),
Head(O.Head),
Tail(O.Tail),
Size(O.Size) {
O.Head = &SentinelSegment;
O.Tail = &SentinelSegment;
O.Size = 0;
}
bool empty() const { return Size == 0; }
AllocatorType &allocator() const {
DCHECK_NE(Alloc, nullptr);
return *Alloc;
}
size_t size() const { return Size; }
T *Append(const T &E) {
if (UNLIKELY(Head == &SentinelSegment))
if (InitHeadAndTail() == nullptr)
return nullptr;
auto Offset = Size % ElementsPerSegment;
if (UNLIKELY(Size != 0 && Offset == 0))
if (AppendNewSegment() == nullptr)
return nullptr;
auto Base = static_cast<Segment *>(Tail)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
*Position = E;
++Size;
return Position;
}
template <class... Args> T *AppendEmplace(Args &&... args) {
if (UNLIKELY(Head == &SentinelSegment))
if (InitHeadAndTail() == nullptr)
return nullptr;
auto Offset = Size % ElementsPerSegment;
auto *LatestSegment = Tail;
if (UNLIKELY(Size != 0 && Offset == 0)) {
LatestSegment = AppendNewSegment();
if (LatestSegment == nullptr)
return nullptr;
}
DCHECK_NE(Tail, &SentinelSegment);
auto Base = static_cast<Segment *>(LatestSegment)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
// In-place construct at Position.
new (Position) T{std::forward<Args>(args)...};
++Size;
return reinterpret_cast<T *>(Position);
}
T &operator[](size_t Offset) const {
DCHECK_LE(Offset, Size);
// We need to traverse the array enough times to find the element at Offset.
auto S = Head;
while (Offset >= ElementsPerSegment) {
S = S->Next;
Offset -= ElementsPerSegment;
DCHECK_NE(S, &SentinelSegment);
}
auto Base = static_cast<Segment *>(S)->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
return *reinterpret_cast<T *>(Position);
}
T &front() const {
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Size, 0u);
return *begin();
}
T &back() const {
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_NE(Size, 0u);
auto It = end();
--It;
return *It;
}
template <class Predicate> T *find_element(Predicate P) const {
if (empty())
return nullptr;
auto E = end();
for (auto I = begin(); I != E; ++I)
if (P(*I))
return &(*I);
return nullptr;
}
/// Remove N Elements from the end. This leaves the blocks behind, and not
/// require allocation of new blocks for new elements added after trimming.
void trim(size_t Elements) {
DCHECK_LE(Elements, Size);
DCHECK_GT(Size, 0);
auto OldSize = Size;
Size -= Elements;
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
for (auto SegmentsToTrim = (nearest_boundary(OldSize, ElementsPerSegment) -
nearest_boundary(Size, ElementsPerSegment)) /
ElementsPerSegment;
SegmentsToTrim > 0; --SegmentsToTrim) {
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
// Put the tail into the Freelist.
auto *FreeSegment = Tail;
Tail = Tail->Prev;
if (Tail == &SentinelSegment)
Head = Tail;
else
Tail->Next = &SentinelSegment;
DCHECK_EQ(Tail->Next, &SentinelSegment);
FreeSegment->Next = Freelist;
FreeSegment->Prev = &SentinelSegment;
if (Freelist != &SentinelSegment)
Freelist->Prev = FreeSegment;
Freelist = FreeSegment;
}
}
// Provide iterators.
Iterator<T> begin() const { return Iterator<T>(Head, 0, Size); }
Iterator<T> end() const { return Iterator<T>(Tail, Size, Size); }
Iterator<const T> cbegin() const { return Iterator<const T>(Head, 0, Size); }
Iterator<const T> cend() const { return Iterator<const T>(Tail, Size, Size); }
};
// We need to have this storage definition out-of-line so that the compiler can
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::SegmentBase Array<T>::SentinelSegment{
&Array<T>::SentinelSegment, &Array<T>::SentinelSegment};
} // namespace __xray
#endif // XRAY_SEGMENTED_ARRAY_H
|