| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 
 | //===- GVN.h - Eliminate redundant values and loads -------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides the interface for LLVM's Global Value Numbering pass
/// which eliminates fully redundant instructions. It also does somewhat Ad-Hoc
/// PRE and dead load elimination.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_SCALAR_GVN_H
#define LLVM_TRANSFORMS_SCALAR_GVN_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Transforms/Utils/OrderedInstructions.h"
#include <cstdint>
#include <utility>
#include <vector>
namespace llvm {
class AssumptionCache;
class BasicBlock;
class BranchInst;
class CallInst;
class Constant;
class ExtractValueInst;
class Function;
class FunctionPass;
class IntrinsicInst;
class LoadInst;
class LoopInfo;
class OptimizationRemarkEmitter;
class PHINode;
class TargetLibraryInfo;
class Value;
/// A private "module" namespace for types and utilities used by GVN. These
/// are implementation details and should not be used by clients.
namespace gvn LLVM_LIBRARY_VISIBILITY {
struct AvailableValue;
struct AvailableValueInBlock;
class GVNLegacyPass;
} // end namespace gvn
/// The core GVN pass object.
///
/// FIXME: We should have a good summary of the GVN algorithm implemented by
/// this particular pass here.
class GVN : public PassInfoMixin<GVN> {
public:
  struct Expression;
  /// Run the pass over the function.
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
  /// This removes the specified instruction from
  /// our various maps and marks it for deletion.
  void markInstructionForDeletion(Instruction *I) {
    VN.erase(I);
    InstrsToErase.push_back(I);
  }
  DominatorTree &getDominatorTree() const { return *DT; }
  AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
  MemoryDependenceResults &getMemDep() const { return *MD; }
  /// This class holds the mapping between values and value numbers.  It is used
  /// as an efficient mechanism to determine the expression-wise equivalence of
  /// two values.
  class ValueTable {
    DenseMap<Value *, uint32_t> valueNumbering;
    DenseMap<Expression, uint32_t> expressionNumbering;
    // Expressions is the vector of Expression. ExprIdx is the mapping from
    // value number to the index of Expression in Expressions. We use it
    // instead of a DenseMap because filling such mapping is faster than
    // filling a DenseMap and the compile time is a little better.
    uint32_t nextExprNumber;
    std::vector<Expression> Expressions;
    std::vector<uint32_t> ExprIdx;
    // Value number to PHINode mapping. Used for phi-translate in scalarpre.
    DenseMap<uint32_t, PHINode *> NumberingPhi;
    // Cache for phi-translate in scalarpre.
    using PhiTranslateMap =
        DenseMap<std::pair<uint32_t, const BasicBlock *>, uint32_t>;
    PhiTranslateMap PhiTranslateTable;
    AliasAnalysis *AA;
    MemoryDependenceResults *MD;
    DominatorTree *DT;
    uint32_t nextValueNumber = 1;
    Expression createExpr(Instruction *I);
    Expression createCmpExpr(unsigned Opcode, CmpInst::Predicate Predicate,
                             Value *LHS, Value *RHS);
    Expression createExtractvalueExpr(ExtractValueInst *EI);
    uint32_t lookupOrAddCall(CallInst *C);
    uint32_t phiTranslateImpl(const BasicBlock *BB, const BasicBlock *PhiBlock,
                              uint32_t Num, GVN &Gvn);
    std::pair<uint32_t, bool> assignExpNewValueNum(Expression &exp);
    bool areAllValsInBB(uint32_t num, const BasicBlock *BB, GVN &Gvn);
  public:
    ValueTable();
    ValueTable(const ValueTable &Arg);
    ValueTable(ValueTable &&Arg);
    ~ValueTable();
    uint32_t lookupOrAdd(Value *V);
    uint32_t lookup(Value *V, bool Verify = true) const;
    uint32_t lookupOrAddCmp(unsigned Opcode, CmpInst::Predicate Pred,
                            Value *LHS, Value *RHS);
    uint32_t phiTranslate(const BasicBlock *BB, const BasicBlock *PhiBlock,
                          uint32_t Num, GVN &Gvn);
    void eraseTranslateCacheEntry(uint32_t Num, const BasicBlock &CurrBlock);
    bool exists(Value *V) const;
    void add(Value *V, uint32_t num);
    void clear();
    void erase(Value *v);
    void setAliasAnalysis(AliasAnalysis *A) { AA = A; }
    AliasAnalysis *getAliasAnalysis() const { return AA; }
    void setMemDep(MemoryDependenceResults *M) { MD = M; }
    void setDomTree(DominatorTree *D) { DT = D; }
    uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    void verifyRemoved(const Value *) const;
  };
private:
  friend class gvn::GVNLegacyPass;
  friend struct DenseMapInfo<Expression>;
  MemoryDependenceResults *MD;
  DominatorTree *DT;
  const TargetLibraryInfo *TLI;
  AssumptionCache *AC;
  SetVector<BasicBlock *> DeadBlocks;
  OptimizationRemarkEmitter *ORE;
  // Maps a block to the topmost instruction with implicit control flow in it.
  DenseMap<const BasicBlock *, const Instruction *>
      FirstImplicitControlFlowInsts;
  OrderedInstructions *OI;
  ValueTable VN;
  /// A mapping from value numbers to lists of Value*'s that
  /// have that value number.  Use findLeader to query it.
  struct LeaderTableEntry {
    Value *Val;
    const BasicBlock *BB;
    LeaderTableEntry *Next;
  };
  DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
  BumpPtrAllocator TableAllocator;
  // Block-local map of equivalent values to their leader, does not
  // propagate to any successors. Entries added mid-block are applied
  // to the remaining instructions in the block.
  SmallMapVector<Value *, Constant *, 4> ReplaceWithConstMap;
  SmallVector<Instruction *, 8> InstrsToErase;
  // Map the block to reversed postorder traversal number. It is used to
  // find back edge easily.
  DenseMap<const BasicBlock *, uint32_t> BlockRPONumber;
  using LoadDepVect = SmallVector<NonLocalDepResult, 64>;
  using AvailValInBlkVect = SmallVector<gvn::AvailableValueInBlock, 64>;
  using UnavailBlkVect = SmallVector<BasicBlock *, 64>;
  bool runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
               const TargetLibraryInfo &RunTLI, AAResults &RunAA,
               MemoryDependenceResults *RunMD, LoopInfo *LI,
               OptimizationRemarkEmitter *ORE);
  /// Push a new Value to the LeaderTable onto the list for its value number.
  void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
    LeaderTableEntry &Curr = LeaderTable[N];
    if (!Curr.Val) {
      Curr.Val = V;
      Curr.BB = BB;
      return;
    }
    LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    Node->Val = V;
    Node->BB = BB;
    Node->Next = Curr.Next;
    Curr.Next = Node;
  }
  /// Scan the list of values corresponding to a given
  /// value number, and remove the given instruction if encountered.
  void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
    LeaderTableEntry *Prev = nullptr;
    LeaderTableEntry *Curr = &LeaderTable[N];
    while (Curr && (Curr->Val != I || Curr->BB != BB)) {
      Prev = Curr;
      Curr = Curr->Next;
    }
    if (!Curr)
      return;
    if (Prev) {
      Prev->Next = Curr->Next;
    } else {
      if (!Curr->Next) {
        Curr->Val = nullptr;
        Curr->BB = nullptr;
      } else {
        LeaderTableEntry *Next = Curr->Next;
        Curr->Val = Next->Val;
        Curr->BB = Next->BB;
        Curr->Next = Next->Next;
      }
    }
  }
  // List of critical edges to be split between iterations.
  SmallVector<std::pair<TerminatorInst *, unsigned>, 4> toSplit;
  // Helper functions of redundant load elimination
  bool processLoad(LoadInst *L);
  bool processNonLocalLoad(LoadInst *L);
  bool processAssumeIntrinsic(IntrinsicInst *II);
  /// Given a local dependency (Def or Clobber) determine if a value is
  /// available for the load.  Returns true if an value is known to be
  /// available and populates Res.  Returns false otherwise.
  bool AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
                               Value *Address, gvn::AvailableValue &Res);
  /// Given a list of non-local dependencies, determine if a value is
  /// available for the load in each specified block.  If it is, add it to
  /// ValuesPerBlock.  If not, add it to UnavailableBlocks.
  void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
                               AvailValInBlkVect &ValuesPerBlock,
                               UnavailBlkVect &UnavailableBlocks);
  bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
                      UnavailBlkVect &UnavailableBlocks);
  // Other helper routines
  bool processInstruction(Instruction *I);
  bool processBlock(BasicBlock *BB);
  void dump(DenseMap<uint32_t, Value *> &d) const;
  bool iterateOnFunction(Function &F);
  bool performPRE(Function &F);
  bool performScalarPRE(Instruction *I);
  bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
                                 BasicBlock *Curr, unsigned int ValNo);
  Value *findLeader(const BasicBlock *BB, uint32_t num);
  void cleanupGlobalSets();
  void fillImplicitControlFlowInfo(BasicBlock *BB);
  void verifyRemoved(const Instruction *I) const;
  bool splitCriticalEdges();
  BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
  bool replaceOperandsWithConsts(Instruction *I) const;
  bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
                         bool DominatesByEdge);
  bool processFoldableCondBr(BranchInst *BI);
  void addDeadBlock(BasicBlock *BB);
  void assignValNumForDeadCode();
  void assignBlockRPONumber(Function &F);
};
/// Create a legacy GVN pass. This also allows parameterizing whether or not
/// loads are eliminated by the pass.
FunctionPass *createGVNPass(bool NoLoads = false);
/// A simple and fast domtree-based GVN pass to hoist common expressions
/// from sibling branches.
struct GVNHoistPass : PassInfoMixin<GVNHoistPass> {
  /// Run the pass over the function.
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// Uses an "inverted" value numbering to decide the similarity of
/// expressions and sinks similar expressions into successors.
struct GVNSinkPass : PassInfoMixin<GVNSinkPass> {
  /// Run the pass over the function.
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_SCALAR_GVN_H
 |