1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#define DEBUG_TYPE "globalisel-utils"
using namespace llvm;
unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
const TargetInstrInfo &TII,
const RegisterBankInfo &RBI,
MachineInstr &InsertPt, unsigned Reg,
const TargetRegisterClass &RegClass) {
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) {
unsigned NewReg = MRI.createVirtualRegister(&RegClass);
BuildMI(*InsertPt.getParent(), InsertPt, InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), NewReg)
.addReg(Reg);
return NewReg;
}
return Reg;
}
unsigned llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
const MachineOperand &RegMO, unsigned OpIdx) {
unsigned Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"PhysReg not implemented");
const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
// Some of the target independent instructions, like COPY, may not impose any
// register class constraints on some of their operands: If it's a use, we can
// skip constraining as the instruction defining the register would constrain
// it.
// We can't constrain unallocatable register classes, because we can't create
// virtual registers for these classes, so we need to let targets handled this
// case.
if (RegClass && !RegClass->isAllocatable())
RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
if (!RegClass) {
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
"Register class constraint is required unless either the "
"instruction is target independent or the operand is a use");
// FIXME: Just bailing out like this here could be not enough, unless we
// expect the users of this function to do the right thing for PHIs and
// COPY:
// v1 = COPY v0
// v2 = COPY v1
// v1 here may end up not being constrained at all. Please notice that to
// reproduce the issue we likely need a destination pattern of a selection
// rule producing such extra copies, not just an input GMIR with them as
// every existing target using selectImpl handles copies before calling it
// and they never reach this function.
return Reg;
}
return constrainRegToClass(MRI, TII, RBI, InsertPt, Reg, *RegClass);
}
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
"A selected instruction is expected");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
MachineOperand &MO = I.getOperand(OpI);
// There's nothing to be done on non-register operands.
if (!MO.isReg())
continue;
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
assert(MO.isReg() && "Unsupported non-reg operand");
unsigned Reg = MO.getReg();
// Physical registers don't need to be constrained.
if (TRI.isPhysicalRegister(Reg))
continue;
// Register operands with a value of 0 (e.g. predicate operands) don't need
// to be constrained.
if (Reg == 0)
continue;
// If the operand is a vreg, we should constrain its regclass, and only
// insert COPYs if that's impossible.
// constrainOperandRegClass does that for us.
MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
MO, OpI));
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
// done.
if (MO.isUse()) {
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
I.tieOperands(DefIdx, OpI);
}
}
return true;
}
bool llvm::isTriviallyDead(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
// If we can move an instruction, we can remove it. Otherwise, it has
// a side-effect of some sort.
bool SawStore = false;
if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore))
return false;
// Instructions without side-effects are dead iff they only define dead vregs.
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
!MRI.use_nodbg_empty(Reg))
return false;
}
return true;
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
R << (" (in function: " + MF.getName() + ")").str();
if (TPC.isGlobalISelAbortEnabled())
report_fatal_error(R.getMsg());
else
MORE.emit(R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
const char *PassName, StringRef Msg,
const MachineInstr &MI) {
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
MI.getDebugLoc(), MI.getParent());
R << Msg;
// Printing MI is expensive; only do it if expensive remarks are enabled.
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
R << ": " << ore::MNV("Inst", MI);
reportGISelFailure(MF, TPC, MORE, R);
}
Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (MI->getOpcode() != TargetOpcode::G_CONSTANT)
return None;
if (MI->getOperand(1).isImm())
return MI->getOperand(1).getImm();
if (MI->getOperand(1).isCImm() &&
MI->getOperand(1).getCImm()->getBitWidth() <= 64)
return MI->getOperand(1).getCImm()->getSExtValue();
return None;
}
const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
return nullptr;
return MI->getOperand(1).getFPImm();
}
llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, unsigned Reg,
const MachineRegisterInfo &MRI) {
auto *DefMI = MRI.getVRegDef(Reg);
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
if (!DstTy.isValid())
return nullptr;
while (DefMI->getOpcode() == TargetOpcode::COPY) {
unsigned SrcReg = DefMI->getOperand(1).getReg();
auto SrcTy = MRI.getType(SrcReg);
if (!SrcTy.isValid() || SrcTy != DstTy)
break;
DefMI = MRI.getVRegDef(SrcReg);
}
return DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
if (Size == 32)
return APFloat(float(Val));
if (Size == 64)
return APFloat(Val);
if (Size != 16)
llvm_unreachable("Unsupported FPConstant size");
bool Ignored;
APFloat APF(Val);
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
return APF;
}
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
AU.addPreserved<StackProtector>();
}
|