1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
|
//===- ConstantRange.cpp - ConstantRange implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
using namespace llvm;
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
: Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
Upper(Lower) {}
ConstantRange::ConstantRange(APInt V)
: Lower(std::move(V)), Upper(Lower + 1) {}
ConstantRange::ConstantRange(APInt L, APInt U)
: Lower(std::move(L)), Upper(std::move(U)) {
assert(Lower.getBitWidth() == Upper.getBitWidth() &&
"ConstantRange with unequal bit widths");
assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
"Lower == Upper, but they aren't min or max value!");
}
ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &CR) {
if (CR.isEmptySet())
return CR;
uint32_t W = CR.getBitWidth();
switch (Pred) {
default:
llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
case CmpInst::ICMP_EQ:
return CR;
case CmpInst::ICMP_NE:
if (CR.isSingleElement())
return ConstantRange(CR.getUpper(), CR.getLower());
return ConstantRange(W);
case CmpInst::ICMP_ULT: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMinValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(APInt::getMinValue(W), std::move(UMax));
}
case CmpInst::ICMP_SLT: {
APInt SMax(CR.getSignedMax());
if (SMax.isMinSignedValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
}
case CmpInst::ICMP_ULE: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMaxValue())
return ConstantRange(W);
return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1);
}
case CmpInst::ICMP_SLE: {
APInt SMax(CR.getSignedMax());
if (SMax.isMaxSignedValue())
return ConstantRange(W);
return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1);
}
case CmpInst::ICMP_UGT: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMaxValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
}
case CmpInst::ICMP_SGT: {
APInt SMin(CR.getSignedMin());
if (SMin.isMaxSignedValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
}
case CmpInst::ICMP_UGE: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMinValue())
return ConstantRange(W);
return ConstantRange(std::move(UMin), APInt::getNullValue(W));
}
case CmpInst::ICMP_SGE: {
APInt SMin(CR.getSignedMin());
if (SMin.isMinSignedValue())
return ConstantRange(W);
return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W));
}
}
}
ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &CR) {
// Follows from De-Morgan's laws:
//
// ~(~A union ~B) == A intersect B.
//
return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
.inverse();
}
ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
const APInt &C) {
// Computes the exact range that is equal to both the constant ranges returned
// by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
// when RHS is a singleton such as an APInt and so the assert is valid.
// However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
// returns [0,4) but makeSatisfyICmpRegion returns [0,2).
//
assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
return makeAllowedICmpRegion(Pred, C);
}
bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
APInt &RHS) const {
bool Success = false;
if (isFullSet() || isEmptySet()) {
Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
RHS = APInt(getBitWidth(), 0);
Success = true;
} else if (auto *OnlyElt = getSingleElement()) {
Pred = CmpInst::ICMP_EQ;
RHS = *OnlyElt;
Success = true;
} else if (auto *OnlyMissingElt = getSingleMissingElement()) {
Pred = CmpInst::ICMP_NE;
RHS = *OnlyMissingElt;
Success = true;
} else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
Pred =
getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
RHS = getUpper();
Success = true;
} else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
Pred =
getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
RHS = getLower();
Success = true;
}
assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
"Bad result!");
return Success;
}
ConstantRange
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) {
using OBO = OverflowingBinaryOperator;
// Computes the intersection of CR0 and CR1. It is different from
// intersectWith in that the ConstantRange returned will only contain elements
// in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
// not, of both X and Y).
auto SubsetIntersect =
[](const ConstantRange &CR0, const ConstantRange &CR1) {
return CR0.inverse().unionWith(CR1.inverse()).inverse();
};
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
assert((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap ||
NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
"NoWrapKind invalid!");
unsigned BitWidth = Other.getBitWidth();
ConstantRange Result(BitWidth);
switch (BinOp) {
default:
// Conservative answer: empty set
return ConstantRange(BitWidth, false);
case Instruction::Add:
if (auto *C = Other.getSingleElement())
if (C->isNullValue())
// Full set: nothing signed / unsigned wraps when added to 0.
return ConstantRange(BitWidth);
if (NoWrapKind & OBO::NoUnsignedWrap)
Result =
SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
-Other.getUnsignedMax()));
if (NoWrapKind & OBO::NoSignedWrap) {
const APInt &SignedMin = Other.getSignedMin();
const APInt &SignedMax = Other.getSignedMax();
if (SignedMax.isStrictlyPositive())
Result = SubsetIntersect(
Result,
ConstantRange(APInt::getSignedMinValue(BitWidth),
APInt::getSignedMinValue(BitWidth) - SignedMax));
if (SignedMin.isNegative())
Result = SubsetIntersect(
Result,
ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
APInt::getSignedMinValue(BitWidth)));
}
return Result;
case Instruction::Sub:
if (auto *C = Other.getSingleElement())
if (C->isNullValue())
// Full set: nothing signed / unsigned wraps when subtracting 0.
return ConstantRange(BitWidth);
if (NoWrapKind & OBO::NoUnsignedWrap)
Result =
SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(),
APInt::getMinValue(BitWidth)));
if (NoWrapKind & OBO::NoSignedWrap) {
const APInt &SignedMin = Other.getSignedMin();
const APInt &SignedMax = Other.getSignedMax();
if (SignedMax.isStrictlyPositive())
Result = SubsetIntersect(
Result,
ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax,
APInt::getSignedMinValue(BitWidth)));
if (SignedMin.isNegative())
Result = SubsetIntersect(
Result,
ConstantRange(APInt::getSignedMinValue(BitWidth),
APInt::getSignedMinValue(BitWidth) + SignedMin));
}
return Result;
case Instruction::Mul: {
if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) {
return SubsetIntersect(
makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap),
makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap));
}
// Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1).
const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
const auto makeSingleValueRegion = [Unsigned,
BitWidth](APInt V) -> ConstantRange {
// Handle special case for 0, -1 and 1. See the last for reason why we
// specialize -1 and 1.
if (V == 0 || V.isOneValue())
return ConstantRange(BitWidth, true);
APInt MinValue, MaxValue;
if (Unsigned) {
MinValue = APInt::getMinValue(BitWidth);
MaxValue = APInt::getMaxValue(BitWidth);
} else {
MinValue = APInt::getSignedMinValue(BitWidth);
MaxValue = APInt::getSignedMaxValue(BitWidth);
}
// e.g. Returning [-127, 127], represented as [-127, -128).
if (!Unsigned && V.isAllOnesValue())
return ConstantRange(-MaxValue, MinValue);
APInt Lower, Upper;
if (!Unsigned && V.isNegative()) {
Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
} else if (Unsigned) {
Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP);
Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN);
} else {
Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
}
if (Unsigned) {
Lower = Lower.zextOrSelf(BitWidth);
Upper = Upper.zextOrSelf(BitWidth);
} else {
Lower = Lower.sextOrSelf(BitWidth);
Upper = Upper.sextOrSelf(BitWidth);
}
// ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
// Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1,
// and 1 are already handled as special cases.
return ConstantRange(Lower, Upper + 1);
};
if (Unsigned)
return makeSingleValueRegion(Other.getUnsignedMax());
return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()),
makeSingleValueRegion(Other.getSignedMax()));
}
}
}
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower.isMaxValue();
}
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower.isMinValue();
}
bool ConstantRange::isWrappedSet() const {
return Lower.ugt(Upper);
}
bool ConstantRange::isSignWrappedSet() const {
return contains(APInt::getSignedMaxValue(getBitWidth())) &&
contains(APInt::getSignedMinValue(getBitWidth()));
}
APInt ConstantRange::getSetSize() const {
if (isFullSet())
return APInt::getOneBitSet(getBitWidth()+1, getBitWidth());
// This is also correct for wrapped sets.
return (Upper - Lower).zext(getBitWidth()+1);
}
bool
ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
assert(getBitWidth() == Other.getBitWidth());
if (isFullSet())
return false;
if (Other.isFullSet())
return true;
return (Upper - Lower).ult(Other.Upper - Other.Lower);
}
bool
ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
assert(MaxSize && "MaxSize can't be 0.");
// If this a full set, we need special handling to avoid needing an extra bit
// to represent the size.
if (isFullSet())
return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
return (Upper - Lower).ugt(MaxSize);
}
APInt ConstantRange::getUnsignedMax() const {
if (isFullSet() || isWrappedSet())
return APInt::getMaxValue(getBitWidth());
return getUpper() - 1;
}
APInt ConstantRange::getUnsignedMin() const {
if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue()))
return APInt::getMinValue(getBitWidth());
return getLower();
}
APInt ConstantRange::getSignedMax() const {
if (isFullSet() || Lower.sgt(Upper))
return APInt::getSignedMaxValue(getBitWidth());
return getUpper() - 1;
}
APInt ConstantRange::getSignedMin() const {
if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue()))
return APInt::getSignedMinValue(getBitWidth());
return getLower();
}
bool ConstantRange::contains(const APInt &V) const {
if (Lower == Upper)
return isFullSet();
if (!isWrappedSet())
return Lower.ule(V) && V.ult(Upper);
return Lower.ule(V) || V.ult(Upper);
}
bool ConstantRange::contains(const ConstantRange &Other) const {
if (isFullSet() || Other.isEmptySet()) return true;
if (isEmptySet() || Other.isFullSet()) return false;
if (!isWrappedSet()) {
if (Other.isWrappedSet())
return false;
return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
}
if (!Other.isWrappedSet())
return Other.getUpper().ule(Upper) ||
Lower.ule(Other.getLower());
return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
}
ConstantRange ConstantRange::subtract(const APInt &Val) const {
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
return ConstantRange(Lower - Val, Upper - Val);
}
ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
return intersectWith(CR.inverse());
}
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common cases.
if ( isEmptySet() || CR.isFullSet()) return *this;
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet())
return CR.intersectWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (Lower.ult(CR.Lower)) {
if (Upper.ule(CR.Lower))
return ConstantRange(getBitWidth(), false);
if (Upper.ult(CR.Upper))
return ConstantRange(CR.Lower, Upper);
return CR;
}
if (Upper.ult(CR.Upper))
return *this;
if (Lower.ult(CR.Upper))
return ConstantRange(Lower, CR.Upper);
return ConstantRange(getBitWidth(), false);
}
if (isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Lower.ult(Upper)) {
if (CR.Upper.ult(Upper))
return CR;
if (CR.Upper.ule(Lower))
return ConstantRange(CR.Lower, Upper);
if (isSizeStrictlySmallerThan(CR))
return *this;
return CR;
}
if (CR.Lower.ult(Lower)) {
if (CR.Upper.ule(Lower))
return ConstantRange(getBitWidth(), false);
return ConstantRange(Lower, CR.Upper);
}
return CR;
}
if (CR.Upper.ult(Upper)) {
if (CR.Lower.ult(Upper)) {
if (isSizeStrictlySmallerThan(CR))
return *this;
return CR;
}
if (CR.Lower.ult(Lower))
return ConstantRange(Lower, CR.Upper);
return CR;
}
if (CR.Upper.ule(Lower)) {
if (CR.Lower.ult(Lower))
return *this;
return ConstantRange(CR.Lower, Upper);
}
if (isSizeStrictlySmallerThan(CR))
return *this;
return CR;
}
ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
if ( isFullSet() || CR.isEmptySet()) return *this;
if (CR.isFullSet() || isEmptySet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
// If the two ranges are disjoint, find the smaller gap and bridge it.
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
if (d1.ult(d2))
return ConstantRange(Lower, CR.Upper);
return ConstantRange(CR.Lower, Upper);
}
APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
if (L.isNullValue() && U.isNullValue())
return ConstantRange(getBitWidth());
return ConstantRange(std::move(L), std::move(U));
}
if (!CR.isWrappedSet()) {
// ------U L----- and ------U L----- : this
// L--U L--U : CR
if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
return *this;
// ------U L----- : this
// L---------U : CR
if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
return ConstantRange(getBitWidth());
// ----U L---- : this
// L---U : CR
// <d1> <d2>
if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
if (d1.ult(d2))
return ConstantRange(Lower, CR.Upper);
return ConstantRange(CR.Lower, Upper);
}
// ----U L----- : this
// L----U : CR
if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
return ConstantRange(CR.Lower, Upper);
// ------U L---- : this
// L-----U : CR
assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
"ConstantRange::unionWith missed a case with one range wrapped");
return ConstantRange(Lower, CR.Upper);
}
// ------U L---- and ------U L---- : this
// -U L----------- and ------------U L : CR
if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
return ConstantRange(getBitWidth());
APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
return ConstantRange(std::move(L), std::move(U));
}
ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
uint32_t ResultBitWidth) const {
switch (CastOp) {
default:
llvm_unreachable("unsupported cast type");
case Instruction::Trunc:
return truncate(ResultBitWidth);
case Instruction::SExt:
return signExtend(ResultBitWidth);
case Instruction::ZExt:
return zeroExtend(ResultBitWidth);
case Instruction::BitCast:
return *this;
case Instruction::FPToUI:
case Instruction::FPToSI:
if (getBitWidth() == ResultBitWidth)
return *this;
else
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
case Instruction::UIToFP: {
// TODO: use input range if available
auto BW = getBitWidth();
APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
return ConstantRange(std::move(Min), std::move(Max));
}
case Instruction::SIToFP: {
// TODO: use input range if available
auto BW = getBitWidth();
APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
return ConstantRange(std::move(SMin), std::move(SMax));
}
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::AddrSpaceCast:
// Conservatively return full set.
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
};
}
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet() || isWrappedSet()) {
// Change into [0, 1 << src bit width)
APInt LowerExt(DstTySize, 0);
if (!Upper) // special case: [X, 0) -- not really wrapping around
LowerExt = Lower.zext(DstTySize);
return ConstantRange(std::move(LowerExt),
APInt::getOneBitSet(DstTySize, SrcTySize));
}
return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
}
ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
// special case: [X, INT_MIN) -- not really wrapping around
if (Upper.isMinSignedValue())
return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
if (isFullSet() || isSignWrappedSet()) {
return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
}
return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
}
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
assert(getBitWidth() > DstTySize && "Not a value truncation");
if (isEmptySet())
return ConstantRange(DstTySize, /*isFullSet=*/false);
if (isFullSet())
return ConstantRange(DstTySize, /*isFullSet=*/true);
APInt LowerDiv(Lower), UpperDiv(Upper);
ConstantRange Union(DstTySize, /*isFullSet=*/false);
// Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
// We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
// then we do the union with [MaxValue, Upper)
if (isWrappedSet()) {
// If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
// truncated range.
if (Upper.getActiveBits() > DstTySize ||
Upper.countTrailingOnes() == DstTySize)
return ConstantRange(DstTySize, /*isFullSet=*/true);
Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
UpperDiv.setAllBits();
// Union covers the MaxValue case, so return if the remaining range is just
// MaxValue(DstTy).
if (LowerDiv == UpperDiv)
return Union;
}
// Chop off the most significant bits that are past the destination bitwidth.
if (LowerDiv.getActiveBits() > DstTySize) {
// Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
LowerDiv -= Adjust;
UpperDiv -= Adjust;
}
unsigned UpperDivWidth = UpperDiv.getActiveBits();
if (UpperDivWidth <= DstTySize)
return ConstantRange(LowerDiv.trunc(DstTySize),
UpperDiv.trunc(DstTySize)).unionWith(Union);
// The truncated value wraps around. Check if we can do better than fullset.
if (UpperDivWidth == DstTySize + 1) {
// Clear the MSB so that UpperDiv wraps around.
UpperDiv.clearBit(DstTySize);
if (UpperDiv.ult(LowerDiv))
return ConstantRange(LowerDiv.trunc(DstTySize),
UpperDiv.trunc(DstTySize)).unionWith(Union);
}
return ConstantRange(DstTySize, /*isFullSet=*/true);
}
ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
if (SrcTySize > DstTySize)
return truncate(DstTySize);
if (SrcTySize < DstTySize)
return zeroExtend(DstTySize);
return *this;
}
ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
if (SrcTySize > DstTySize)
return truncate(DstTySize);
if (SrcTySize < DstTySize)
return signExtend(DstTySize);
return *this;
}
ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other) const {
assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
switch (BinOp) {
case Instruction::Add:
return add(Other);
case Instruction::Sub:
return sub(Other);
case Instruction::Mul:
return multiply(Other);
case Instruction::UDiv:
return udiv(Other);
case Instruction::Shl:
return shl(Other);
case Instruction::LShr:
return lshr(Other);
case Instruction::AShr:
return ashr(Other);
case Instruction::And:
return binaryAnd(Other);
case Instruction::Or:
return binaryOr(Other);
// Note: floating point operations applied to abstract ranges are just
// ideal integer operations with a lossy representation
case Instruction::FAdd:
return add(Other);
case Instruction::FSub:
return sub(Other);
case Instruction::FMul:
return multiply(Other);
default:
// Conservatively return full set.
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
}
}
ConstantRange
ConstantRange::add(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (isFullSet() || Other.isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
APInt NewLower = getLower() + Other.getLower();
APInt NewUpper = getUpper() + Other.getUpper() - 1;
if (NewLower == NewUpper)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
if (X.isSizeStrictlySmallerThan(*this) ||
X.isSizeStrictlySmallerThan(Other))
// We've wrapped, therefore, full set.
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return X;
}
ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
// Calculate the subset of this range such that "X + Other" is
// guaranteed not to wrap (overflow) for all X in this subset.
// makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
// passing a single element range.
auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add,
ConstantRange(Other),
OverflowingBinaryOperator::NoSignedWrap);
auto NSWConstrainedRange = intersectWith(NSWRange);
return NSWConstrainedRange.add(ConstantRange(Other));
}
ConstantRange
ConstantRange::sub(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (isFullSet() || Other.isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
APInt NewLower = getLower() - Other.getUpper() + 1;
APInt NewUpper = getUpper() - Other.getLower();
if (NewLower == NewUpper)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
if (X.isSizeStrictlySmallerThan(*this) ||
X.isSizeStrictlySmallerThan(Other))
// We've wrapped, therefore, full set.
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return X;
}
ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
// TODO: If either operand is a single element and the multiply is known to
// be non-wrapping, round the result min and max value to the appropriate
// multiple of that element. If wrapping is possible, at least adjust the
// range according to the greatest power-of-two factor of the single element.
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
// Multiplication is signedness-independent. However different ranges can be
// obtained depending on how the input ranges are treated. These different
// ranges are all conservatively correct, but one might be better than the
// other. We calculate two ranges; one treating the inputs as unsigned
// and the other signed, then return the smallest of these ranges.
// Unsigned range first.
APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
ConstantRange Result_zext = ConstantRange(this_min * Other_min,
this_max * Other_max + 1);
ConstantRange UR = Result_zext.truncate(getBitWidth());
// If the unsigned range doesn't wrap, and isn't negative then it's a range
// from one positive number to another which is as good as we can generate.
// In this case, skip the extra work of generating signed ranges which aren't
// going to be better than this range.
if (!UR.isWrappedSet() &&
(UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
return UR;
// Now the signed range. Because we could be dealing with negative numbers
// here, the lower bound is the smallest of the cartesian product of the
// lower and upper ranges; for example:
// [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
// Similarly for the upper bound, swapping min for max.
this_min = getSignedMin().sext(getBitWidth() * 2);
this_max = getSignedMax().sext(getBitWidth() * 2);
Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
auto L = {this_min * Other_min, this_min * Other_max,
this_max * Other_min, this_max * Other_max};
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
ConstantRange SR = Result_sext.truncate(getBitWidth());
return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
}
ConstantRange
ConstantRange::smax(const ConstantRange &Other) const {
// X smax Y is: range(smax(X_smin, Y_smin),
// smax(X_smax, Y_smax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::umax(const ConstantRange &Other) const {
// X umax Y is: range(umax(X_umin, Y_umin),
// umax(X_umax, Y_umax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::smin(const ConstantRange &Other) const {
// X smin Y is: range(smin(X_smin, Y_smin),
// smin(X_smax, Y_smax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::umin(const ConstantRange &Other) const {
// X umin Y is: range(umin(X_umin, Y_umin),
// umin(X_umax, Y_umax))
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
if (NewU == NewL)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(NewL), std::move(NewU));
}
ConstantRange
ConstantRange::udiv(const ConstantRange &RHS) const {
if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (RHS.isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
APInt RHS_umin = RHS.getUnsignedMin();
if (RHS_umin.isNullValue()) {
// We want the lowest value in RHS excluding zero. Usually that would be 1
// except for a range in the form of [X, 1) in which case it would be X.
if (RHS.getUpper() == 1)
RHS_umin = RHS.getLower();
else
RHS_umin = 1;
}
APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
// If the LHS is Full and the RHS is a wrapped interval containing 1 then
// this could occur.
if (Lower == Upper)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(Lower), std::move(Upper));
}
ConstantRange
ConstantRange::binaryAnd(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
// TODO: replace this with something less conservative
APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
if (umin.isAllOnesValue())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
}
ConstantRange
ConstantRange::binaryOr(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
// TODO: replace this with something less conservative
APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
if (umax.isNullValue())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth()));
}
ConstantRange
ConstantRange::shl(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt max = getUnsignedMax();
APInt Other_umax = Other.getUnsignedMax();
// there's overflow!
if (Other_umax.uge(max.countLeadingZeros()))
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
// FIXME: implement the other tricky cases
APInt min = getUnsignedMin();
min <<= Other.getUnsignedMin();
max <<= Other_umax;
return ConstantRange(std::move(min), std::move(max) + 1);
}
ConstantRange
ConstantRange::lshr(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
if (min == max)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(min), std::move(max));
}
ConstantRange
ConstantRange::ashr(const ConstantRange &Other) const {
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
// May straddle zero, so handle both positive and negative cases.
// 'PosMax' is the upper bound of the result of the ashr
// operation, when Upper of the LHS of ashr is a non-negative.
// number. Since ashr of a non-negative number will result in a
// smaller number, the Upper value of LHS is shifted right with
// the minimum value of 'Other' instead of the maximum value.
APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
// 'PosMin' is the lower bound of the result of the ashr
// operation, when Lower of the LHS is a non-negative number.
// Since ashr of a non-negative number will result in a smaller
// number, the Lower value of LHS is shifted right with the
// maximum value of 'Other'.
APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
// 'NegMax' is the upper bound of the result of the ashr
// operation, when Upper of the LHS of ashr is a negative number.
// Since 'ashr' of a negative number will result in a bigger
// number, the Upper value of LHS is shifted right with the
// maximum value of 'Other'.
APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
// 'NegMin' is the lower bound of the result of the ashr
// operation, when Lower of the LHS of ashr is a negative number.
// Since 'ashr' of a negative number will result in a bigger
// number, the Lower value of LHS is shifted right with the
// minimum value of 'Other'.
APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
APInt max, min;
if (getSignedMin().isNonNegative()) {
// Upper and Lower of LHS are non-negative.
min = PosMin;
max = PosMax;
} else if (getSignedMax().isNegative()) {
// Upper and Lower of LHS are negative.
min = NegMin;
max = NegMax;
} else {
// Upper is non-negative and Lower is negative.
min = NegMin;
max = PosMax;
}
if (min == max)
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(std::move(min), std::move(max));
}
ConstantRange ConstantRange::inverse() const {
if (isFullSet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
if (isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/true);
return ConstantRange(Upper, Lower);
}
void ConstantRange::print(raw_ostream &OS) const {
if (isFullSet())
OS << "full-set";
else if (isEmptySet())
OS << "empty-set";
else
OS << "[" << Lower << "," << Upper << ")";
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void ConstantRange::dump() const {
print(dbgs());
}
#endif
ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
const unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1 && "Must have at least one range!");
assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
for (unsigned i = 1; i < NumRanges; ++i) {
auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
// Note: unionWith will potentially create a range that contains values not
// contained in any of the original N ranges.
CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
}
return CR;
}
|