File: eval.pass.cpp

package info (click to toggle)
llvm-toolchain-7 1%3A7.0.1-8~deb9u3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 733,456 kB
  • sloc: cpp: 3,776,651; ansic: 633,271; asm: 350,301; python: 142,716; objc: 107,612; sh: 22,626; lisp: 11,056; perl: 7,999; pascal: 6,742; ml: 5,537; awk: 3,536; makefile: 2,557; cs: 2,027; xml: 841; ruby: 156
file content (104 lines) | stat: -rw-r--r-- 3,242 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
//===----------------------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// <random>

// class bernoulli_distribution

// template<class _URNG> result_type operator()(_URNG& g);

#include <random>
#include <numeric>
#include <vector>
#include <cassert>
#include <cstddef>

template <class T>
inline
T
sqr(T x)
{
    return x * x;
}

int main()
{
    {
        typedef std::bernoulli_distribution D;
        typedef std::minstd_rand G;
        G g;
        D d(.75);
        const int N = 100000;
        std::vector<D::result_type> u;
        for (int i = 0; i < N; ++i)
            u.push_back(d(g));
        double mean = std::accumulate(u.begin(), u.end(),
                                              double(0)) / u.size();
        double var = 0;
        double skew = 0;
        double kurtosis = 0;
        for (std::size_t i = 0; i < u.size(); ++i)
        {
            double dbl = (u[i] - mean);
            double d2 = sqr(dbl);
            var += d2;
            skew += dbl * d2;
            kurtosis += d2 * d2;
        }
        var /= u.size();
        double dev = std::sqrt(var);
        skew /= u.size() * dev * var;
        kurtosis /= u.size() * var * var;
        kurtosis -= 3;
        double x_mean = d.p();
        double x_var = d.p()*(1-d.p());
        double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
        double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
        assert(std::abs((var - x_var) / x_var) < 0.01);
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
    }
    {
        typedef std::bernoulli_distribution D;
        typedef std::minstd_rand G;
        G g;
        D d(.25);
        const int N = 100000;
        std::vector<D::result_type> u;
        for (int i = 0; i < N; ++i)
            u.push_back(d(g));
        double mean = std::accumulate(u.begin(), u.end(),
                                              double(0)) / u.size();
        double var = 0;
        double skew = 0;
        double kurtosis = 0;
        for (std::size_t i = 0; i < u.size(); ++i)
        {
            double dbl = (u[i] - mean);
            double d2 = sqr(dbl);
            var += d2;
            skew += dbl * d2;
            kurtosis += d2 * d2;
        }
        var /= u.size();
        double dev = std::sqrt(var);
        skew /= u.size() * dev * var;
        kurtosis /= u.size() * var * var;
        kurtosis -= 3;
        double x_mean = d.p();
        double x_var = d.p()*(1-d.p());
        double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
        double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
        assert(std::abs((var - x_var) / x_var) < 0.01);
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
    }
}