1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
//===- ARM.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class ARM final : public TargetInfo {
public:
ARM();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const override;
RelType getDynRel(RelType Type) const override;
int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override;
void writeGotPlt(uint8_t *Buf, const Symbol &S) const override;
void writeIgotPlt(uint8_t *Buf, const Symbol &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void addPltSymbols(InputSection &IS, uint64_t Off) const override;
void addPltHeaderSymbols(InputSection &ISD) const override;
bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
uint64_t BranchAddr, const Symbol &S) const override;
bool inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const override;
void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
};
} // namespace
ARM::ARM() {
CopyRel = R_ARM_COPY;
RelativeRel = R_ARM_RELATIVE;
IRelativeRel = R_ARM_IRELATIVE;
GotRel = R_ARM_GLOB_DAT;
PltRel = R_ARM_JUMP_SLOT;
TlsGotRel = R_ARM_TLS_TPOFF32;
TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
TlsOffsetRel = R_ARM_TLS_DTPOFF32;
GotBaseSymInGotPlt = false;
GotEntrySize = 4;
GotPltEntrySize = 4;
PltEntrySize = 16;
PltHeaderSize = 32;
TrapInstr = 0xd4d4d4d4;
// ARM uses Variant 1 TLS
TcbSize = 8;
NeedsThunks = true;
// The placing of pre-created ThunkSections is controlled by the
// ThunkSectionSpacing parameter. The aim is to place the
// ThunkSection such that all branches from the InputSections prior to the
// ThunkSection can reach a Thunk placed at the end of the ThunkSection.
// Graphically:
// | up to ThunkSectionSpacing .text input sections |
// | ThunkSection |
// | up to ThunkSectionSpacing .text input sections |
// | ThunkSection |
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARM. This is to
// match the most common expected case of a Thumb 2 encoded BL, BLX or B.W
// ARM B, BL, BLX range +/- 32MiB
// Thumb B.W, BL, BLX range +/- 16MiB
// Thumb B<cc>.W range +/- 1MiB
// If a branch cannot reach a pre-created ThunkSection a new one will be
// created so we can handle the rare cases of a Thumb 2 conditional branch.
// We intentionally use a lower size for ThunkSectionSpacing than the maximum
// branch range so the end of the ThunkSection is more likely to be within
// range of the branch instruction that is furthest away. The value we shorten
// ThunkSectionSpacing by is set conservatively to allow us to create 16,384
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
// one of the Thunks going out of range.
// FIXME: lld assumes that the Thumb BL and BLX encoding permits the J1 and
// J2 bits to be used to extend the branch range. On earlier Architectures
// such as ARMv4, ARMv5 and ARMv6 (except ARMv6T2) the range is +/- 4MiB. If
// support for the earlier encodings is added then when they are used the
// ThunkSectionSpacing will need lowering.
ThunkSectionSpacing = 0x1000000 - 0x30000;
}
uint32_t ARM::calcEFlags() const {
// The ABIFloatType is used by loaders to detect the floating point calling
// convention.
uint32_t ABIFloatType = 0;
if (Config->ARMVFPArgs == ARMVFPArgKind::Base ||
Config->ARMVFPArgs == ARMVFPArgKind::Default)
ABIFloatType = EF_ARM_ABI_FLOAT_SOFT;
else if (Config->ARMVFPArgs == ARMVFPArgKind::VFP)
ABIFloatType = EF_ARM_ABI_FLOAT_HARD;
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
// but we don't have any firm guarantees of conformance. Linux AArch64
// kernels (as of 2016) require an EABI version to be set.
return EF_ARM_EABI_VER5 | ABIFloatType;
}
RelExpr ARM::getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const {
switch (Type) {
case R_ARM_THM_JUMP11:
return R_PC;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
return R_PLT_PC;
case R_ARM_GOTOFF32:
// (S + A) - GOT_ORG
return R_GOTREL;
case R_ARM_GOT_BREL:
// GOT(S) + A - GOT_ORG
return R_GOT_OFF;
case R_ARM_GOT_PREL:
case R_ARM_TLS_IE32:
// GOT(S) + A - P
return R_GOT_PC;
case R_ARM_SBREL32:
return R_ARM_SBREL;
case R_ARM_TARGET1:
return Config->Target1Rel ? R_PC : R_ABS;
case R_ARM_TARGET2:
if (Config->Target2 == Target2Policy::Rel)
return R_PC;
if (Config->Target2 == Target2Policy::Abs)
return R_ABS;
return R_GOT_PC;
case R_ARM_TLS_GD32:
return R_TLSGD_PC;
case R_ARM_TLS_LDM32:
return R_TLSLD_PC;
case R_ARM_BASE_PREL:
// B(S) + A - P
// FIXME: currently B(S) assumed to be .got, this may not hold for all
// platforms.
return R_GOTONLY_PC;
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_REL32:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
return R_PC;
case R_ARM_NONE:
return R_NONE;
case R_ARM_TLS_LE32:
return R_TLS;
default:
return R_ABS;
}
}
RelType ARM::getDynRel(RelType Type) const {
if ((Type == R_ARM_ABS32) || (Type == R_ARM_TARGET1 && !Config->Target1Rel))
return R_ARM_ABS32;
return R_ARM_NONE;
}
void ARM::writeGotPlt(uint8_t *Buf, const Symbol &) const {
write32le(Buf, InX::Plt->getVA());
}
void ARM::writeIgotPlt(uint8_t *Buf, const Symbol &S) const {
// An ARM entry is the address of the ifunc resolver function.
write32le(Buf, S.getVA());
}
// Long form PLT Header that does not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltHeaderLong(uint8_t *Buf) {
const uint8_t PltData[] = {
0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
0xd4, 0xd4, 0xd4, 0xd4};
memcpy(Buf, PltData, sizeof(PltData));
uint64_t GotPlt = InX::GotPlt->getVA();
uint64_t L1 = InX::Plt->getVA() + 8;
write32le(Buf + 16, GotPlt - L1 - 8);
}
// The default PLT header requires the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePltHeader(uint8_t *Buf) const {
// Use a similar sequence to that in writePlt(), the difference is the calling
// conventions mean we use lr instead of ip. The PLT entry is responsible for
// saving lr on the stack, the dynamic loader is responsible for reloading
// it.
const uint32_t PltData[] = {
0xe52de004, // L1: str lr, [sp,#-4]!
0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
};
uint64_t Offset = InX::GotPlt->getVA() - InX::Plt->getVA() - 4;
if (!llvm::isUInt<27>(Offset)) {
// We cannot encode the Offset, use the long form.
writePltHeaderLong(Buf);
return;
}
write32le(Buf + 0, PltData[0]);
write32le(Buf + 4, PltData[1] | ((Offset >> 20) & 0xff));
write32le(Buf + 8, PltData[2] | ((Offset >> 12) & 0xff));
write32le(Buf + 12, PltData[3] | (Offset & 0xfff));
write32le(Buf + 16, TrapInstr); // Pad to 32-byte boundary
write32le(Buf + 20, TrapInstr);
write32le(Buf + 24, TrapInstr);
write32le(Buf + 28, TrapInstr);
}
void ARM::addPltHeaderSymbols(InputSection &IS) const {
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS);
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS);
}
// Long form PLT entries that do not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltLong(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) {
const uint8_t PltData[] = {
0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
};
memcpy(Buf, PltData, sizeof(PltData));
uint64_t L1 = PltEntryAddr + 4;
write32le(Buf + 12, GotPltEntryAddr - L1 - 8);
}
// The default PLT entries require the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
// The PLT entry is similar to the example given in Appendix A of ELF for
// the Arm Architecture. Instead of using the Group Relocations to find the
// optimal rotation for the 8-bit immediate used in the add instructions we
// hard code the most compact rotations for simplicity. This saves a load
// instruction over the long plt sequences.
const uint32_t PltData[] = {
0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8
0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8
0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
};
uint64_t Offset = GotPltEntryAddr - PltEntryAddr - 8;
if (!llvm::isUInt<27>(Offset)) {
// We cannot encode the Offset, use the long form.
writePltLong(Buf, GotPltEntryAddr, PltEntryAddr, Index, RelOff);
return;
}
write32le(Buf + 0, PltData[0] | ((Offset >> 20) & 0xff));
write32le(Buf + 4, PltData[1] | ((Offset >> 12) & 0xff));
write32le(Buf + 8, PltData[2] | (Offset & 0xfff));
write32le(Buf + 12, TrapInstr); // Pad to 16-byte boundary
}
void ARM::addPltSymbols(InputSection &IS, uint64_t Off) const {
addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS);
addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS);
}
bool ARM::needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
uint64_t BranchAddr, const Symbol &S) const {
// If S is an undefined weak symbol and does not have a PLT entry then it
// will be resolved as a branch to the next instruction.
if (S.isUndefWeak() && !S.isInPlt())
return false;
// A state change from ARM to Thumb and vice versa must go through an
// interworking thunk if the relocation type is not R_ARM_CALL or
// R_ARM_THM_CALL.
switch (Type) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
// Source is ARM, all PLT entries are ARM so no interworking required.
// Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
if (Expr == R_PC && ((S.getVA() & 1) == 1))
return true;
LLVM_FALLTHROUGH;
case R_ARM_CALL: {
uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA();
return !inBranchRange(Type, BranchAddr, Dst);
}
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
// Source is Thumb, all PLT entries are ARM so interworking is required.
// Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0))
return true;
LLVM_FALLTHROUGH;
case R_ARM_THM_CALL: {
uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA();
return !inBranchRange(Type, BranchAddr, Dst);
}
}
return false;
}
bool ARM::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const {
uint64_t Range;
uint64_t InstrSize;
switch (Type) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
case R_ARM_CALL:
Range = 0x2000000;
InstrSize = 4;
break;
case R_ARM_THM_JUMP19:
Range = 0x100000;
InstrSize = 2;
break;
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
Range = 0x1000000;
InstrSize = 2;
break;
default:
return true;
}
// PC at Src is 2 instructions ahead, immediate of branch is signed
if (Src > Dst)
Range -= 2 * InstrSize;
else
Range += InstrSize;
if ((Dst & 0x1) == 0)
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
// destination will be 4 byte aligned.
Src &= ~0x3;
else
// Bit 0 == 1 denotes Thumb state, it is not part of the range
Dst &= ~0x1;
uint64_t Distance = (Src > Dst) ? Src - Dst : Dst - Src;
return Distance <= Range;
}
void ARM::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
switch (Type) {
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GLOB_DAT:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_REL32:
case R_ARM_RELATIVE:
case R_ARM_SBREL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_GD32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_LE32:
case R_ARM_TLS_TPOFF32:
case R_ARM_TLS_DTPOFF32:
write32le(Loc, Val);
break;
case R_ARM_TLS_DTPMOD32:
write32le(Loc, 1);
break;
case R_ARM_PREL31:
checkInt(Loc, Val, 31, Type);
write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
break;
case R_ARM_CALL:
// R_ARM_CALL is used for BL and BLX instructions, depending on the
// value of bit 0 of Val, we must select a BL or BLX instruction
if (Val & 1) {
// If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
checkInt(Loc, Val, 26, Type);
write32le(Loc, 0xfa000000 | // opcode
((Val & 2) << 23) | // H
((Val >> 2) & 0x00ffffff)); // imm24
break;
}
if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
// BLX (always unconditional) instruction to an ARM Target, select an
// unconditional BL.
write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
// fall through as BL encoding is shared with B
LLVM_FALLTHROUGH;
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
checkInt(Loc, Val, 26, Type);
write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
break;
case R_ARM_THM_JUMP11:
checkInt(Loc, Val, 12, Type);
write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
break;
case R_ARM_THM_JUMP19:
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
checkInt(Loc, Val, 21, Type);
write16le(Loc,
(read16le(Loc) & 0xfbc0) | // opcode cond
((Val >> 10) & 0x0400) | // S
((Val >> 12) & 0x003f)); // imm6
write16le(Loc + 2,
0x8000 | // opcode
((Val >> 8) & 0x0800) | // J2
((Val >> 5) & 0x2000) | // J1
((Val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_THM_CALL:
// R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
// value of bit 0 of Val, we must select a BL or BLX instruction
if ((Val & 1) == 0) {
// Ensure BLX destination is 4-byte aligned. As BLX instruction may
// only be two byte aligned. This must be done before overflow check
Val = alignTo(Val, 4);
}
// Bit 12 is 0 for BLX, 1 for BL
write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
// Fall through as rest of encoding is the same as B.W
LLVM_FALLTHROUGH;
case R_ARM_THM_JUMP24:
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
// FIXME: Use of I1 and I2 require v6T2ops
checkInt(Loc, Val, 25, Type);
write16le(Loc,
0xf000 | // opcode
((Val >> 14) & 0x0400) | // S
((Val >> 12) & 0x03ff)); // imm10
write16le(Loc + 2,
(read16le(Loc + 2) & 0xd000) | // opcode
(((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
(((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
((Val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVW_PREL_NC:
write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
(Val & 0x0fff));
break;
case R_ARM_MOVT_ABS:
case R_ARM_MOVT_PREL:
checkInt(Loc, Val, 32, Type);
write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
(((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
break;
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVT_PREL:
// Encoding T1: A = imm4:i:imm3:imm8
checkInt(Loc, Val, 32, Type);
write16le(Loc,
0xf2c0 | // opcode
((Val >> 17) & 0x0400) | // i
((Val >> 28) & 0x000f)); // imm4
write16le(Loc + 2,
(read16le(Loc + 2) & 0x8f00) | // opcode
((Val >> 12) & 0x7000) | // imm3
((Val >> 16) & 0x00ff)); // imm8
break;
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVW_PREL_NC:
// Encoding T3: A = imm4:i:imm3:imm8
write16le(Loc,
0xf240 | // opcode
((Val >> 1) & 0x0400) | // i
((Val >> 12) & 0x000f)); // imm4
write16le(Loc + 2,
(read16le(Loc + 2) & 0x8f00) | // opcode
((Val << 4) & 0x7000) | // imm3
(Val & 0x00ff)); // imm8
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
switch (Type) {
default:
return 0;
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_REL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_GD32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LE32:
return SignExtend64<32>(read32le(Buf));
case R_ARM_PREL31:
return SignExtend64<31>(read32le(Buf));
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
return SignExtend64<26>(read32le(Buf) << 2);
case R_ARM_THM_JUMP11:
return SignExtend64<12>(read16le(Buf) << 1);
case R_ARM_THM_JUMP19: {
// Encoding T3: A = S:J2:J1:imm10:imm6:0
uint16_t Hi = read16le(Buf);
uint16_t Lo = read16le(Buf + 2);
return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
((Lo & 0x0800) << 8) | // J2
((Lo & 0x2000) << 5) | // J1
((Hi & 0x003f) << 12) | // imm6
((Lo & 0x07ff) << 1)); // imm11:0
}
case R_ARM_THM_CALL:
case R_ARM_THM_JUMP24: {
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
// FIXME: I1 and I2 require v6T2ops
uint16_t Hi = read16le(Buf);
uint16_t Lo = read16le(Buf + 2);
return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
(~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
(~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
((Hi & 0x003ff) << 12) | // imm0
((Lo & 0x007ff) << 1)); // imm11:0
}
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
// MOVT is in the range -32768 <= A < 32768
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL: {
uint64_t Val = read32le(Buf) & 0x000f0fff;
return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
}
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL: {
// Encoding T3: A = imm4:i:imm3:imm8
uint16_t Hi = read16le(Buf);
uint16_t Lo = read16le(Buf + 2);
return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
((Hi & 0x0400) << 1) | // i
((Lo & 0x7000) >> 4) | // imm3
(Lo & 0x00ff)); // imm8
}
}
}
TargetInfo *elf::getARMTargetInfo() {
static ARM Target;
return &Target;
}
|