File: Metric.cpp

package info (click to toggle)
llvm-toolchain-7 1%3A7.0.1-8~deb9u3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 733,456 kB
  • sloc: cpp: 3,776,651; ansic: 633,271; asm: 350,301; python: 142,716; objc: 107,612; sh: 22,626; lisp: 11,056; perl: 7,999; pascal: 6,742; ml: 5,537; awk: 3,536; makefile: 2,557; cs: 2,027; xml: 841; ruby: 156
file content (60 lines) | stat: -rw-r--r-- 1,576 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
//===-- Metric.cpp ----------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Metric.h"
#include "MemoryGauge.h"
#include <cmath>

using namespace lldb_perf;

template <class T> Metric<T>::Metric() : Metric("") {}

template <class T>
Metric<T>::Metric(const char *n, const char *d)
    : m_name(n ? n : ""), m_description(d ? d : ""), m_dataset() {}

template <class T> void Metric<T>::Append(T v) { m_dataset.push_back(v); }

template <class T> size_t Metric<T>::GetCount() const {
  return m_dataset.size();
}

template <class T> T Metric<T>::GetSum() const {
  T sum = 0;
  for (auto v : m_dataset)
    sum += v;
  return sum;
}

template <class T> T Metric<T>::GetAverage() const {
  return GetSum() / GetCount();
}

// Knuth's algorithm for stddev - massive cancellation resistant
template <class T>
T Metric<T>::GetStandardDeviation(StandardDeviationMode mode) const {
  size_t n = 0;
  T mean = 0;
  T M2 = 0;
  for (auto x : m_dataset) {
    n = n + 1;
    T delta = x - mean;
    mean = mean + delta / n;
    M2 = M2 + delta * (x - mean);
  }
  T variance;
  if (mode == StandardDeviationMode::ePopulation || n == 1)
    variance = M2 / n;
  else
    variance = M2 / (n - 1);
  return sqrt(variance);
}

template class lldb_perf::Metric<double>;
template class lldb_perf::Metric<MemoryStats>;