1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A scheduler for processor resource units and processor resource groups.
//
//===----------------------------------------------------------------------===//
#include "Scheduler.h"
#include "Support.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace mca {
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
uint64_t ResourceState::selectNextInSequence() {
assert(isReady());
uint64_t Next = getNextInSequence();
while (!isSubResourceReady(Next)) {
updateNextInSequence();
Next = getNextInSequence();
}
return Next;
}
#ifndef NDEBUG
void ResourceState::dump() const {
dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask
<< ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask
<< ", BufferSize=" << BufferSize
<< ", AvailableSlots=" << AvailableSlots
<< ", Reserved=" << Unavailable << '\n';
}
#endif
void ResourceManager::initialize(const llvm::MCSchedModel &SM) {
computeProcResourceMasks(SM, ProcResID2Mask);
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I)
addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]);
}
// Adds a new resource state in Resources, as well as a new descriptor in
// ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState
// objects from resource mask identifiers.
void ResourceManager::addResource(const MCProcResourceDesc &Desc,
unsigned Index, uint64_t Mask) {
assert(Resources.find(Mask) == Resources.end() && "Resource already added!");
Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Index, Mask);
}
// Returns the actual resource consumed by this Use.
// First, is the primary resource ID.
// Second, is the specific sub-resource ID.
std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) {
ResourceState &RS = *Resources[ResourceID];
uint64_t SubResourceID = RS.selectNextInSequence();
if (RS.isAResourceGroup())
return selectPipe(SubResourceID);
return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID);
}
void ResourceState::removeFromNextInSequence(uint64_t ID) {
assert(NextInSequenceMask);
assert(countPopulation(ID) == 1);
if (ID > getNextInSequence())
RemovedFromNextInSequence |= ID;
NextInSequenceMask = NextInSequenceMask & (~ID);
if (!NextInSequenceMask) {
NextInSequenceMask = ResourceSizeMask;
assert(NextInSequenceMask != RemovedFromNextInSequence);
NextInSequenceMask ^= RemovedFromNextInSequence;
RemovedFromNextInSequence = 0;
}
}
void ResourceManager::use(ResourceRef RR) {
// Mark the sub-resource referenced by RR as used.
ResourceState &RS = *Resources[RR.first];
RS.markSubResourceAsUsed(RR.second);
// If there are still available units in RR.first,
// then we are done.
if (RS.isReady())
return;
// Notify to other resources that RR.first is no longer available.
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first)) {
Current.markSubResourceAsUsed(RR.first);
Current.removeFromNextInSequence(RR.first);
}
}
}
void ResourceManager::release(ResourceRef RR) {
ResourceState &RS = *Resources[RR.first];
bool WasFullyUsed = !RS.isReady();
RS.releaseSubResource(RR.second);
if (!WasFullyUsed)
return;
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first))
Current.releaseSubResource(RR.first);
}
}
ResourceStateEvent
ResourceManager::canBeDispatched(ArrayRef<uint64_t> Buffers) const {
ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE;
for (uint64_t Buffer : Buffers) {
Result = isBufferAvailable(Buffer);
if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE)
break;
}
return Result;
}
void ResourceManager::reserveBuffers(ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers) {
reserveBuffer(R);
ResourceState &Resource = *Resources[R];
if (Resource.isADispatchHazard()) {
assert(!Resource.isReserved());
Resource.setReserved();
}
}
}
void ResourceManager::releaseBuffers(ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers)
releaseBuffer(R);
}
bool ResourceManager::canBeIssued(const InstrDesc &Desc) const {
return std::all_of(Desc.Resources.begin(), Desc.Resources.end(),
[&](const std::pair<uint64_t, const ResourceUsage> &E) {
unsigned NumUnits =
E.second.isReserved() ? 0U : E.second.NumUnits;
return isReady(E.first, NumUnits);
});
}
// Returns true if all resources are in-order, and there is at least one
// resource which is a dispatch hazard (BufferSize = 0).
bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) {
if (!canBeIssued(Desc))
return false;
bool AllInOrderResources = all_of(Desc.Buffers, [&](uint64_t BufferMask) {
const ResourceState &Resource = *Resources[BufferMask];
return Resource.isInOrder() || Resource.isADispatchHazard();
});
if (!AllInOrderResources)
return false;
return any_of(Desc.Buffers, [&](uint64_t BufferMask) {
return Resources[BufferMask]->isADispatchHazard();
});
}
void ResourceManager::issueInstruction(
const InstrDesc &Desc,
SmallVectorImpl<std::pair<ResourceRef, double>> &Pipes) {
for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) {
const CycleSegment &CS = R.second.CS;
if (!CS.size()) {
releaseResource(R.first);
continue;
}
assert(CS.begin() == 0 && "Invalid {Start, End} cycles!");
if (!R.second.isReserved()) {
ResourceRef Pipe = selectPipe(R.first);
use(Pipe);
BusyResources[Pipe] += CS.size();
// Replace the resource mask with a valid processor resource index.
const ResourceState &RS = *Resources[Pipe.first];
Pipe.first = RS.getProcResourceID();
Pipes.emplace_back(
std::pair<ResourceRef, double>(Pipe, static_cast<double>(CS.size())));
} else {
assert((countPopulation(R.first) > 1) && "Expected a group!");
// Mark this group as reserved.
assert(R.second.isReserved());
reserveResource(R.first);
BusyResources[ResourceRef(R.first, R.first)] += CS.size();
}
}
}
void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) {
for (std::pair<ResourceRef, unsigned> &BR : BusyResources) {
if (BR.second)
BR.second--;
if (!BR.second) {
// Release this resource.
const ResourceRef &RR = BR.first;
if (countPopulation(RR.first) == 1)
release(RR);
releaseResource(RR.first);
ResourcesFreed.push_back(RR);
}
}
for (const ResourceRef &RF : ResourcesFreed)
BusyResources.erase(RF);
}
#ifndef NDEBUG
void Scheduler::dump() const {
dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n';
dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n';
dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n';
Resources->dump();
}
#endif
bool Scheduler::canBeDispatched(const InstRef &IR,
HWStallEvent::GenericEventType &Event) const {
Event = HWStallEvent::Invalid;
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (Desc.MayLoad && LSU->isLQFull())
Event = HWStallEvent::LoadQueueFull;
else if (Desc.MayStore && LSU->isSQFull())
Event = HWStallEvent::StoreQueueFull;
else {
switch (Resources->canBeDispatched(Desc.Buffers)) {
default:
return true;
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
Event = HWStallEvent::SchedulerQueueFull;
break;
case ResourceStateEvent::RS_RESERVED:
Event = HWStallEvent::DispatchGroupStall;
}
}
return false;
}
void Scheduler::issueInstructionImpl(
InstRef &IR,
SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) {
Instruction *IS = IR.getInstruction();
const InstrDesc &D = IS->getDesc();
// Issue the instruction and collect all the consumed resources
// into a vector. That vector is then used to notify the listener.
Resources->issueInstruction(D, UsedResources);
// Notify the instruction that it started executing.
// This updates the internal state of each write.
IS->execute();
if (IS->isExecuting())
IssuedQueue[IR.getSourceIndex()] = IS;
}
// Release the buffered resources and issue the instruction.
void Scheduler::issueInstruction(
InstRef &IR,
SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
releaseBuffers(Desc.Buffers);
issueInstructionImpl(IR, UsedResources);
}
void Scheduler::promoteToReadyQueue(SmallVectorImpl<InstRef> &Ready) {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const unsigned IID = I->first;
Instruction *IS = I->second;
// Check if this instruction is now ready. In case, force
// a transition in state using method 'update()'.
if (!IS->isReady())
IS->update();
const InstrDesc &Desc = IS->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
if (!IS->isReady() || (IsMemOp && !LSU->isReady({IID, IS}))) {
++I;
continue;
}
Ready.emplace_back(IID, IS);
ReadyQueue[IID] = IS;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
}
}
InstRef Scheduler::select() {
// Find the oldest ready-to-issue instruction in the ReadyQueue.
auto It = std::find_if(ReadyQueue.begin(), ReadyQueue.end(),
[&](const QueueEntryTy &Entry) {
const InstrDesc &D = Entry.second->getDesc();
return Resources->canBeIssued(D);
});
if (It == ReadyQueue.end())
return {0, nullptr};
// We want to prioritize older instructions over younger instructions to
// minimize the pressure on the reorder buffer. We also want to
// rank higher the instructions with more users to better expose ILP.
// Compute a rank value based on the age of an instruction (i.e. its source
// index) and its number of users. The lower the rank value, the better.
int Rank = It->first - It->second->getNumUsers();
for (auto I = It, E = ReadyQueue.end(); I != E; ++I) {
int CurrentRank = I->first - I->second->getNumUsers();
if (CurrentRank < Rank) {
const InstrDesc &D = I->second->getDesc();
if (Resources->canBeIssued(D))
It = I;
}
}
// We found an instruction to issue.
InstRef IR(It->first, It->second);
ReadyQueue.erase(It);
return IR;
}
void Scheduler::updatePendingQueue(SmallVectorImpl<InstRef> &Ready) {
// Notify to instructions in the pending queue that a new cycle just
// started.
for (QueueEntryTy Entry : WaitQueue)
Entry.second->cycleEvent();
promoteToReadyQueue(Ready);
}
void Scheduler::updateIssuedQueue(SmallVectorImpl<InstRef> &Executed) {
for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Instruction *IS = Entry.second;
IS->cycleEvent();
if (IS->isExecuted()) {
Executed.push_back({Entry.first, Entry.second});
auto ToRemove = I;
++I;
IssuedQueue.erase(ToRemove);
} else {
LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << Entry.first
<< " is still executing.\n");
++I;
}
}
}
void Scheduler::onInstructionExecuted(const InstRef &IR) {
LSU->onInstructionExecuted(IR);
}
void Scheduler::reclaimSimulatedResources(SmallVectorImpl<ResourceRef> &Freed) {
Resources->cycleEvent(Freed);
}
bool Scheduler::reserveResources(InstRef &IR) {
// If necessary, reserve queue entries in the load-store unit (LSU).
const bool Reserved = LSU->reserve(IR);
if (!IR.getInstruction()->isReady() || (Reserved && !LSU->isReady(IR))) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the Wait Queue\n");
WaitQueue[IR.getSourceIndex()] = IR.getInstruction();
return false;
}
return true;
}
bool Scheduler::issueImmediately(InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (!Desc.isZeroLatency() && !Resources->mustIssueImmediately(Desc)) {
LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR
<< " to the Ready Queue\n");
ReadyQueue[IR.getSourceIndex()] = IR.getInstruction();
return false;
}
return true;
}
} // namespace mca
|