File: CodeEmitterGen.cpp

package info (click to toggle)
llvm-toolchain-7 1%3A7.0.1-8
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 733,456 kB
  • sloc: cpp: 3,776,651; ansic: 633,271; asm: 350,301; python: 142,716; objc: 107,612; sh: 22,626; lisp: 11,056; perl: 7,999; pascal: 6,742; ml: 5,537; awk: 3,536; makefile: 2,557; cs: 2,027; xml: 841; ruby: 156
file content (397 lines) | stat: -rw-r--r-- 13,588 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// CodeEmitterGen uses the descriptions of instructions and their fields to
// construct an automated code emitter: a function that, given a MachineInstr,
// returns the (currently, 32-bit unsigned) value of the instruction.
//
//===----------------------------------------------------------------------===//

#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

class CodeEmitterGen {
  RecordKeeper &Records;

public:
  CodeEmitterGen(RecordKeeper &R) : Records(R) {}

  void run(raw_ostream &o);

private:
  int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
  std::string getInstructionCase(Record *R, CodeGenTarget &Target);
  void AddCodeToMergeInOperand(Record *R, BitsInit *BI,
                               const std::string &VarName,
                               unsigned &NumberedOp,
                               std::set<unsigned> &NamedOpIndices,
                               std::string &Case, CodeGenTarget &Target);

};

// If the VarBitInit at position 'bit' matches the specified variable then
// return the variable bit position.  Otherwise return -1.
int CodeEmitterGen::getVariableBit(const std::string &VarName,
                                   BitsInit *BI, int bit) {
  if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
    if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
      if (VI->getName() == VarName)
        return VBI->getBitNum();
  } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
    if (VI->getName() == VarName)
      return 0;
  }

  return -1;
}

void CodeEmitterGen::
AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName,
                        unsigned &NumberedOp,
                        std::set<unsigned> &NamedOpIndices,
                        std::string &Case, CodeGenTarget &Target) {
  CodeGenInstruction &CGI = Target.getInstruction(R);

  // Determine if VarName actually contributes to the Inst encoding.
  int bit = BI->getNumBits()-1;

  // Scan for a bit that this contributed to.
  for (; bit >= 0; ) {
    if (getVariableBit(VarName, BI, bit) != -1)
      break;
    
    --bit;
  }
  
  // If we found no bits, ignore this value, otherwise emit the call to get the
  // operand encoding.
  if (bit < 0) return;
  
  // If the operand matches by name, reference according to that
  // operand number. Non-matching operands are assumed to be in
  // order.
  unsigned OpIdx;
  if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
    // Get the machine operand number for the indicated operand.
    OpIdx = CGI.Operands[OpIdx].MIOperandNo;
    assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) &&
           "Explicitly used operand also marked as not emitted!");
  } else {
    unsigned NumberOps = CGI.Operands.size();
    /// If this operand is not supposed to be emitted by the
    /// generated emitter, skip it.
    while (NumberedOp < NumberOps &&
           (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
              (!NamedOpIndices.empty() && NamedOpIndices.count(
                CGI.Operands.getSubOperandNumber(NumberedOp).first)))) {
      ++NumberedOp;

      if (NumberedOp >= CGI.Operands.back().MIOperandNo +
                        CGI.Operands.back().MINumOperands) {
        errs() << "Too few operands in record " << R->getName() <<
                  " (no match for variable " << VarName << "):\n";
        errs() << *R;
        errs() << '\n';

        return;
      }
    }

    OpIdx = NumberedOp++;
  }
  
  std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
  std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName;
  
  // If the source operand has a custom encoder, use it. This will
  // get the encoding for all of the suboperands.
  if (!EncoderMethodName.empty()) {
    // A custom encoder has all of the information for the
    // sub-operands, if there are more than one, so only
    // query the encoder once per source operand.
    if (SO.second == 0) {
      Case += "      // op: " + VarName + "\n" +
              "      op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
      Case += ", Fixups, STI";
      Case += ");\n";
    }
  } else {
    Case += "      // op: " + VarName + "\n" +
      "      op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
    Case += ", Fixups, STI";
    Case += ");\n";
  }
  
  for (; bit >= 0; ) {
    int varBit = getVariableBit(VarName, BI, bit);
    
    // If this bit isn't from a variable, skip it.
    if (varBit == -1) {
      --bit;
      continue;
    }
    
    // Figure out the consecutive range of bits covered by this operand, in
    // order to generate better encoding code.
    int beginInstBit = bit;
    int beginVarBit = varBit;
    int N = 1;
    for (--bit; bit >= 0;) {
      varBit = getVariableBit(VarName, BI, bit);
      if (varBit == -1 || varBit != (beginVarBit - N)) break;
      ++N;
      --bit;
    }
     
    uint64_t opMask = ~(uint64_t)0 >> (64-N);
    int opShift = beginVarBit - N + 1;
    opMask <<= opShift;
    opShift = beginInstBit - beginVarBit;
    
    if (opShift > 0) {
      Case += "      Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " +
              itostr(opShift) + ";\n";
    } else if (opShift < 0) {
      Case += "      Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " + 
              itostr(-opShift) + ";\n";
    } else {
      Case += "      Value |= op & UINT64_C(" + utostr(opMask) + ");\n";
    }
  }
}

std::string CodeEmitterGen::getInstructionCase(Record *R,
                                               CodeGenTarget &Target) {
  std::string Case;
  BitsInit *BI = R->getValueAsBitsInit("Inst");
  unsigned NumberedOp = 0;
  std::set<unsigned> NamedOpIndices;

  // Collect the set of operand indices that might correspond to named
  // operand, and skip these when assigning operands based on position.
  if (Target.getInstructionSet()->
       getValueAsBit("noNamedPositionallyEncodedOperands")) {
    CodeGenInstruction &CGI = Target.getInstruction(R);
    for (const RecordVal &RV : R->getValues()) {
      unsigned OpIdx;
      if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx))
        continue;

      NamedOpIndices.insert(OpIdx);
    }
  }

  // Loop over all of the fields in the instruction, determining which are the
  // operands to the instruction.
  for (const RecordVal &RV : R->getValues()) { 
    // Ignore fixed fields in the record, we're looking for values like:
    //    bits<5> RST = { ?, ?, ?, ?, ? };
    if (RV.getPrefix() || RV.getValue()->isComplete())
      continue;
    
    AddCodeToMergeInOperand(R, BI, RV.getName(), NumberedOp,
                            NamedOpIndices, Case, Target);
  }

  StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
  if (!PostEmitter.empty()) {
    Case += "      Value = ";
    Case += PostEmitter;
    Case += "(MI, Value";
    Case += ", STI";
    Case += ");\n";
  }
  
  return Case;
}

void CodeEmitterGen::run(raw_ostream &o) {
  CodeGenTarget Target(Records);
  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");

  // For little-endian instruction bit encodings, reverse the bit order
  Target.reverseBitsForLittleEndianEncoding();

  ArrayRef<const CodeGenInstruction*> NumberedInstructions =
    Target.getInstructionsByEnumValue();

  o << "// Undef for HURD\n";
  o << "#ifdef EIEIO\n#undef EIEIO\n#endif\n";

  // Emit function declaration
  o << "uint64_t " << Target.getName();
  o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
    << "    SmallVectorImpl<MCFixup> &Fixups,\n"
    << "    const MCSubtargetInfo &STI) const {\n";

  // Emit instruction base values
  o << "  static const uint64_t InstBits[] = {\n";
  for (const CodeGenInstruction *CGI : NumberedInstructions) {
    Record *R = CGI->TheDef;

    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
        R->getValueAsBit("isPseudo")) {
      o << "    UINT64_C(0),\n";
      continue;
    }

    BitsInit *BI = R->getValueAsBitsInit("Inst");

    // Start by filling in fixed values.
    uint64_t Value = 0;
    for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
      if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e-i-1)))
        Value |= (uint64_t)B->getValue() << (e-i-1);
    }
    o << "    UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n";
  }
  o << "    UINT64_C(0)\n  };\n";

  // Map to accumulate all the cases.
  std::map<std::string, std::vector<std::string>> CaseMap;

  // Construct all cases statement for each opcode
  for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end();
        IC != EC; ++IC) {
    Record *R = *IC;
    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
        R->getValueAsBit("isPseudo"))
      continue;
    std::string InstName =
        (R->getValueAsString("Namespace") + "::" + R->getName()).str();
    std::string Case = getInstructionCase(R, Target);

    CaseMap[Case].push_back(std::move(InstName));
  }

  // Emit initial function code
  o << "  const unsigned opcode = MI.getOpcode();\n"
    << "  uint64_t Value = InstBits[opcode];\n"
    << "  uint64_t op = 0;\n"
    << "  (void)op;  // suppress warning\n"
    << "  switch (opcode) {\n";

  // Emit each case statement
  std::map<std::string, std::vector<std::string>>::iterator IE, EE;
  for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
    const std::string &Case = IE->first;
    std::vector<std::string> &InstList = IE->second;

    for (int i = 0, N = InstList.size(); i < N; i++) {
      if (i) o << "\n";
      o << "    case " << InstList[i]  << ":";
    }
    o << " {\n";
    o << Case;
    o << "      break;\n"
      << "    }\n";
  }

  // Default case: unhandled opcode
  o << "  default:\n"
    << "    std::string msg;\n"
    << "    raw_string_ostream Msg(msg);\n"
    << "    Msg << \"Not supported instr: \" << MI;\n"
    << "    report_fatal_error(Msg.str());\n"
    << "  }\n"
    << "  return Value;\n"
    << "}\n\n";

  const auto &All = SubtargetFeatureInfo::getAll(Records);
  std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
  SubtargetFeatures.insert(All.begin(), All.end());

  o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
    << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
    << "#include <sstream>\n\n";

  // Emit the subtarget feature enumeration.
  SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(SubtargetFeatures,
                                                            o);

  // Emit the name table for error messages.
  o << "#ifndef NDEBUG\n";
  SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o);
  o << "#endif // NDEBUG\n";

  // Emit the available features compute function.
  SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
      Target.getName(), "MCCodeEmitter", "computeAvailableFeatures",
      SubtargetFeatures, o);

  // Emit the predicate verifier.
  o << "void " << Target.getName()
    << "MCCodeEmitter::verifyInstructionPredicates(\n"
    << "    const MCInst &Inst, uint64_t AvailableFeatures) const {\n"
    << "#ifndef NDEBUG\n"
    << "  static uint64_t RequiredFeatures[] = {\n";
  unsigned InstIdx = 0;
  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
    o << "    ";
    for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
      const auto &I = SubtargetFeatures.find(Predicate);
      if (I != SubtargetFeatures.end())
        o << I->second.getEnumName() << " | ";
    }
    o << "0, // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
    InstIdx++;
  }
  o << "  };\n\n";
  o << "  assert(Inst.getOpcode() < " << InstIdx << ");\n";
  o << "  uint64_t MissingFeatures =\n"
    << "      (AvailableFeatures & RequiredFeatures[Inst.getOpcode()]) ^\n"
    << "      RequiredFeatures[Inst.getOpcode()];\n"
    << "  if (MissingFeatures) {\n"
    << "    std::ostringstream Msg;\n"
    << "    Msg << \"Attempting to emit \" << "
       "MCII.getName(Inst.getOpcode()).str()\n"
    << "        << \" instruction but the \";\n"
    << "    for (unsigned i = 0; i < 8 * sizeof(MissingFeatures); ++i)\n"
    << "      if (MissingFeatures & (1ULL << i))\n"
    << "        Msg << SubtargetFeatureNames[i] << \" \";\n"
    << "    Msg << \"predicate(s) are not met\";\n"
    << "    report_fatal_error(Msg.str());\n"
    << "  }\n"
    << "#else\n"
    << "// Silence unused variable warning on targets that don't use MCII for "
       "other purposes (e.g. BPF).\n"
    << "(void)MCII;\n"
    << "#endif // NDEBUG\n";
  o << "}\n";
  o << "#endif\n";
}

} // end anonymous namespace

namespace llvm {

void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) {
  emitSourceFileHeader("Machine Code Emitter", OS);
  CodeEmitterGen(RK).run(OS);
}

} // end namespace llvm