1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
//===--------------------- DispatchStage.cpp --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file models the dispatch component of an instruction pipeline.
///
/// The DispatchStage is responsible for updating instruction dependencies
/// and communicating to the simulated instruction scheduler that an instruction
/// is ready to be scheduled for execution.
///
//===----------------------------------------------------------------------===//
#include "DispatchStage.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
namespace mca {
void DispatchStage::notifyInstructionDispatched(const InstRef &IR,
ArrayRef<unsigned> UsedRegs) {
LLVM_DEBUG(dbgs() << "[E] Instruction Dispatched: #" << IR << '\n');
notifyEvent<HWInstructionEvent>(HWInstructionDispatchedEvent(IR, UsedRegs));
}
bool DispatchStage::checkPRF(const InstRef &IR) {
SmallVector<unsigned, 4> RegDefs;
for (const std::unique_ptr<WriteState> &RegDef :
IR.getInstruction()->getDefs())
RegDefs.emplace_back(RegDef->getRegisterID());
const unsigned RegisterMask = PRF.isAvailable(RegDefs);
// A mask with all zeroes means: register files are available.
if (RegisterMask) {
notifyEvent<HWStallEvent>(
HWStallEvent(HWStallEvent::RegisterFileStall, IR));
return false;
}
return true;
}
bool DispatchStage::checkRCU(const InstRef &IR) {
const unsigned NumMicroOps = IR.getInstruction()->getDesc().NumMicroOps;
if (RCU.isAvailable(NumMicroOps))
return true;
notifyEvent<HWStallEvent>(
HWStallEvent(HWStallEvent::RetireControlUnitStall, IR));
return false;
}
bool DispatchStage::checkScheduler(const InstRef &IR) {
HWStallEvent::GenericEventType Event;
const bool Ready = SC.canBeDispatched(IR, Event);
if (!Ready)
notifyEvent<HWStallEvent>(HWStallEvent(Event, IR));
return Ready;
}
void DispatchStage::updateRAWDependencies(ReadState &RS,
const MCSubtargetInfo &STI) {
SmallVector<WriteRef, 4> DependentWrites;
collectWrites(DependentWrites, RS.getRegisterID());
RS.setDependentWrites(DependentWrites.size());
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteRef &WR : DependentWrites) {
WriteState &WS = *WR.getWriteState();
unsigned WriteResID = WS.getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS.addUser(&RS, ReadAdvance);
}
}
void DispatchStage::dispatch(InstRef IR) {
assert(!CarryOver && "Cannot dispatch another instruction!");
Instruction &IS = *IR.getInstruction();
const InstrDesc &Desc = IS.getDesc();
const unsigned NumMicroOps = Desc.NumMicroOps;
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// A dependency-breaking instruction doesn't have to wait on the register
// input operands, and it is often optimized at register renaming stage.
// Update RAW dependencies if this instruction is not a dependency-breaking
// instruction. A dependency-breaking instruction is a zero-latency
// instruction that doesn't consume hardware resources.
// An example of dependency-breaking instruction on X86 is a zero-idiom XOR.
bool IsDependencyBreaking = IS.isDependencyBreaking();
for (std::unique_ptr<ReadState> &RS : IS.getUses())
if (RS->isImplicitRead() || !IsDependencyBreaking)
updateRAWDependencies(*RS, STI);
// By default, a dependency-breaking zero-latency instruction is expected to
// be optimized at register renaming stage. That means, no physical register
// is allocated to the instruction.
bool ShouldAllocateRegisters =
!(Desc.isZeroLatency() && IsDependencyBreaking);
SmallVector<unsigned, 4> RegisterFiles(PRF.getNumRegisterFiles());
for (std::unique_ptr<WriteState> &WS : IS.getDefs()) {
PRF.addRegisterWrite(WriteRef(IR.first, WS.get()), RegisterFiles,
ShouldAllocateRegisters);
}
// Reserve slots in the RCU, and notify the instruction that it has been
// dispatched to the schedulers for execution.
IS.dispatch(RCU.reserveSlot(IR, NumMicroOps));
// Notify listeners of the "instruction dispatched" event.
notifyInstructionDispatched(IR, RegisterFiles);
}
void DispatchStage::cycleStart() {
AvailableEntries = CarryOver >= DispatchWidth ? 0 : DispatchWidth - CarryOver;
CarryOver = CarryOver >= DispatchWidth ? CarryOver - DispatchWidth : 0U;
}
bool DispatchStage::execute(InstRef &IR) {
const InstrDesc &Desc = IR.getInstruction()->getDesc();
if (!isAvailable(Desc.NumMicroOps) || !canDispatch(IR))
return false;
dispatch(IR);
return true;
}
#ifndef NDEBUG
void DispatchStage::dump() const {
PRF.dump();
RCU.dump();
}
#endif
} // namespace mca
|