| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 
 | // RUN: %check_clang_tidy %s bugprone-use-after-move %t -- -- -std=c++17 -fno-delayed-template-parsing
typedef decltype(nullptr) nullptr_t;
namespace std {
typedef unsigned size_t;
template <typename T>
struct unique_ptr {
  unique_ptr();
  T *get() const;
  explicit operator bool() const;
  void reset(T *ptr);
  T &operator*() const;
  T *operator->() const;
  T& operator[](size_t i) const;
};
template <typename T>
struct shared_ptr {
  shared_ptr();
  T *get() const;
  explicit operator bool() const;
  void reset(T *ptr);
  T &operator*() const;
  T *operator->() const;
};
template <typename T>
struct weak_ptr {
  weak_ptr();
  bool expired() const;
};
#define DECLARE_STANDARD_CONTAINER(name) \
  template <typename T>                  \
  struct name {                          \
    name();                              \
    void clear();                        \
    bool empty();                        \
  }
#define DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(name) \
  template <typename T>                              \
  struct name {                                      \
    name();                                          \
    void clear();                                    \
    bool empty();                                    \
    void assign(size_t, const T &);                  \
  }
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(basic_string);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(vector);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(deque);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(forward_list);
DECLARE_STANDARD_CONTAINER_WITH_ASSIGN(list);
DECLARE_STANDARD_CONTAINER(set);
DECLARE_STANDARD_CONTAINER(map);
DECLARE_STANDARD_CONTAINER(multiset);
DECLARE_STANDARD_CONTAINER(multimap);
DECLARE_STANDARD_CONTAINER(unordered_set);
DECLARE_STANDARD_CONTAINER(unordered_map);
DECLARE_STANDARD_CONTAINER(unordered_multiset);
DECLARE_STANDARD_CONTAINER(unordered_multimap);
typedef basic_string<char> string;
template <typename>
struct remove_reference;
template <typename _Tp>
struct remove_reference {
  typedef _Tp type;
};
template <typename _Tp>
struct remove_reference<_Tp &> {
  typedef _Tp type;
};
template <typename _Tp>
struct remove_reference<_Tp &&> {
  typedef _Tp type;
};
template <typename _Tp>
constexpr typename std::remove_reference<_Tp>::type &&move(_Tp &&__t) noexcept {
  return static_cast<typename remove_reference<_Tp>::type &&>(__t);
}
} // namespace std
class A {
public:
  A();
  A(const A &);
  A(A &&);
  A &operator=(const A &);
  A &operator=(A &&);
  void foo() const;
  int getInt() const;
  operator bool() const;
  int i;
};
template <class T>
class AnnotatedContainer {
public:
  AnnotatedContainer();
  void foo() const;
  [[clang::reinitializes]] void clear();
};
////////////////////////////////////////////////////////////////////////////////
// General tests.
// Simple case.
void simple() {
  A a;
  a.foo();
  A other_a = std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:15: note: move occurred here
}
// A warning should only be emitted for one use-after-move.
void onlyFlagOneUseAfterMove() {
  A a;
  a.foo();
  A other_a = std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:15: note: move occurred here
  a.foo();
}
void moveAfterMove() {
  // Move-after-move also counts as a use.
  {
    A a;
    std::move(a);
    std::move(a);
    // CHECK-NOTES: [[@LINE-1]]:15: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // This is also true if the move itself turns into the use on the second loop
  // iteration.
  {
    A a;
    for (int i = 0; i < 10; ++i) {
      std::move(a);
      // CHECK-NOTES: [[@LINE-1]]:17: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-2]]:7: note: move occurred here
      // CHECK-NOTES: [[@LINE-3]]:17: note: the use happens in a later loop
    }
  }
}
// Checks also works on function parameters that have a use-after move.
void parameters(A a) {
  std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}
void standardSmartPtr() {
  // std::unique_ptr<>, std::shared_ptr<> and std::weak_ptr<> are guaranteed to
  // be null after a std::move. So the check only flags accesses that would
  // dereference the pointer.
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr.get();
    static_cast<bool>(ptr);
    *ptr;
    // CHECK-NOTES: [[@LINE-1]]:6: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:5: note: move occurred here
  }
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr->foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr[0];
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    std::shared_ptr<A> ptr;
    std::move(ptr);
    ptr.get();
    static_cast<bool>(ptr);
    *ptr;
    // CHECK-NOTES: [[@LINE-1]]:6: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:5: note: move occurred here
  }
  {
    std::shared_ptr<A> ptr;
    std::move(ptr);
    ptr->foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    // std::weak_ptr<> cannot be dereferenced directly, so we only check that
    // member functions may be called on it after a move.
    std::weak_ptr<A> ptr;
    std::move(ptr);
    ptr.expired();
  }
  // Make sure we recognize std::unique_ptr<> or std::shared_ptr<> if they're
  // wrapped in a typedef.
  {
    typedef std::unique_ptr<A> PtrToA;
    PtrToA ptr;
    std::move(ptr);
    ptr.get();
  }
  {
    typedef std::shared_ptr<A> PtrToA;
    PtrToA ptr;
    std::move(ptr);
    ptr.get();
  }
  // And we don't get confused if the template argument is a little more
  // involved.
  {
    struct B {
      typedef A AnotherNameForA;
    };
    std::unique_ptr<B::AnotherNameForA> ptr;
    std::move(ptr);
    ptr.get();
  }
  // Make sure we treat references to smart pointers correctly.
  {
    std::unique_ptr<A> ptr;
    std::unique_ptr<A>& ref_to_ptr = ptr;
    std::move(ref_to_ptr);
    ref_to_ptr.get();
  }
  {
    std::unique_ptr<A> ptr;
    std::unique_ptr<A>&& rvalue_ref_to_ptr = std::move(ptr);
    std::move(rvalue_ref_to_ptr);
    rvalue_ref_to_ptr.get();
  }
  // We don't give any special treatment to types that are called "unique_ptr"
  // or "shared_ptr" but are not in the "::std" namespace.
  {
    struct unique_ptr {
      void get();
    } ptr;
    std::move(ptr);
    ptr.get();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'ptr' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
}
// The check also works in member functions.
class Container {
  void useAfterMoveInMemberFunction() {
    A a;
    std::move(a);
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
};
// We see the std::move() if it's inside a declaration.
void moveInDeclaration() {
  A a;
  A another_a(std::move(a));
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
}
// We see the std::move if it's inside an initializer list. Initializer lists
// are a special case because they cause ASTContext::getParents() to return
// multiple parents for certain nodes in their subtree. This is because
// RecursiveASTVisitor visits both the syntactic and semantic forms of
// InitListExpr, and the parent-child relationships are different between the
// two forms.
void moveInInitList() {
  struct S {
    A a;
  };
  A a;
  S s{std::move(a)};
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:7: note: move occurred here
}
void lambdas() {
  // Use-after-moves inside a lambda should be detected.
  {
    A a;
    auto lambda = [a] {
      std::move(a);
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-3]]:7: note: move occurred here
    };
  }
  // This is just as true if the variable was declared inside the lambda.
  {
    auto lambda = [] {
      A a;
      std::move(a);
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-3]]:7: note: move occurred here
    };
  }
  // But don't warn if the move happened inside the lambda but the use happened
  // outside -- because
  // - the 'a' inside the lambda is a copy, and
  // - we don't know when the lambda will get called anyway
  {
    A a;
    auto lambda = [a] {
      std::move(a);
    };
    a.foo();
  }
  // Warn if the use consists of a capture that happens after a move.
  {
    A a;
    std::move(a);
    auto lambda = [a]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:20: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // ...even if the capture was implicit.
  {
    A a;
    std::move(a);
    auto lambda = [=]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:20: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // Same tests but for capture by reference.
  {
    A a;
    std::move(a);
    auto lambda = [&a]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:21: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    A a;
    std::move(a);
    auto lambda = [&]() { a.foo(); };
    // CHECK-NOTES: [[@LINE-1]]:20: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // But don't warn if the move happened after the capture.
  {
    A a;
    auto lambda = [a]() { a.foo(); };
    std::move(a);
  }
  // ...and again, same thing with an implicit move.
  {
    A a;
    auto lambda = [=]() { a.foo(); };
    std::move(a);
  }
  // Same tests but for capture by reference.
  {
    A a;
    auto lambda = [&a]() { a.foo(); };
    std::move(a);
  }
  {
    A a;
    auto lambda = [&]() { a.foo(); };
    std::move(a);
  }
}
// Use-after-moves are detected in uninstantiated templates if the moved type
// is not a dependent type.
template <class T>
void movedTypeIsNotDependentType() {
  T t;
  A a;
  std::move(a);
  a.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}
// And if the moved type is a dependent type, the use-after-move is detected if
// the template is instantiated.
template <class T>
void movedTypeIsDependentType() {
  T t;
  std::move(t);
  t.foo();
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 't' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}
template void movedTypeIsDependentType<A>();
// We handle the case correctly where the move consists of an implicit call
// to a conversion operator.
void implicitConversionOperator() {
  struct Convertible {
    operator A() && { return A(); }
  };
  void takeA(A a);
  Convertible convertible;
  takeA(std::move(convertible));
  convertible;
  // CHECK-NOTES: [[@LINE-1]]:3: warning: 'convertible' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:9: note: move occurred here
}
// Using decltype on an expression is not a use.
void decltypeIsNotUse() {
  A a;
  std::move(a);
  decltype(a) other_a;
}
// Ignore moves or uses that occur as part of template arguments.
template <int>
class ClassTemplate {
public:
  void foo(A a);
};
template <int>
void functionTemplate(A a);
void templateArgIsNotUse() {
  {
    // A pattern like this occurs in the EXPECT_EQ and ASSERT_EQ macros in
    // Google Test.
    A a;
    ClassTemplate<sizeof(A(std::move(a)))>().foo(std::move(a));
  }
  {
    A a;
    functionTemplate<sizeof(A(std::move(a)))>(std::move(a));
  }
}
// Ignore moves of global variables.
A global_a;
void ignoreGlobalVariables() {
  std::move(global_a);
  global_a.foo();
}
// Ignore moves of member variables.
class IgnoreMemberVariables {
  A a;
  static A static_a;
  void f() {
    std::move(a);
    a.foo();
    std::move(static_a);
    static_a.foo();
  }
};
////////////////////////////////////////////////////////////////////////////////
// Tests involving control flow.
void useAndMoveInLoop() {
  // Warn about use-after-moves if they happen in a later loop iteration than
  // the std::move().
  {
    A a;
    for (int i = 0; i < 10; ++i) {
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE+2]]:7: note: move occurred here
      // CHECK-NOTES: [[@LINE-3]]:7: note: the use happens in a later loop
      std::move(a);
    }
  }
  // However, this case shouldn't be flagged -- the scope of the declaration of
  // 'a' is important.
  {
    for (int i = 0; i < 10; ++i) {
      A a;
      a.foo();
      std::move(a);
    }
  }
  // Same as above, except that we have an unrelated variable being declared in
  // the same declaration as 'a'. This case is interesting because it tests that
  // the synthetic DeclStmts generated by the CFG are sequenced correctly
  // relative to the other statements.
  {
    for (int i = 0; i < 10; ++i) {
      A a, other;
      a.foo();
      std::move(a);
    }
  }
  // Don't warn if we return after the move.
  {
    A a;
    for (int i = 0; i < 10; ++i) {
      a.foo();
      if (a.getInt() > 0) {
        std::move(a);
        return;
      }
    }
  }
}
void differentBranches(int i) {
  // Don't warn if the use is in a different branch from the move.
  {
    A a;
    if (i > 0) {
      std::move(a);
    } else {
      a.foo();
    }
  }
  // Same thing, but with a ternary operator.
  {
    A a;
    i > 0 ? (void)std::move(a) : a.foo();
  }
  // A variation on the theme above.
  {
    A a;
    a.getInt() > 0 ? a.getInt() : A(std::move(a)).getInt();
  }
  // Same thing, but with a switch statement.
  {
    A a;
    switch (i) {
    case 1:
      std::move(a);
      break;
    case 2:
      a.foo();
      break;
    }
  }
  // However, if there's a fallthrough, we do warn.
  {
    A a;
    switch (i) {
    case 1:
      std::move(a);
    case 2:
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-4]]:7: note: move occurred here
      break;
    }
  }
}
// False positive: A use-after-move is flagged even though the "if (b)" and
// "if (!b)" are mutually exclusive.
void mutuallyExclusiveBranchesFalsePositive(bool b) {
  A a;
  if (b) {
    std::move(a);
  }
  if (!b) {
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:5: note: move occurred here
  }
}
// Destructors marked [[noreturn]] are handled correctly in the control flow
// analysis. (These are used in some styles of assertion macros.)
class FailureLogger {
public:
  FailureLogger();
  [[noreturn]] ~FailureLogger();
  void log(const char *);
};
#define ASSERT(x) \
  while (x)       \
  FailureLogger().log(#x)
bool operationOnA(A);
void noreturnDestructor() {
  A a;
  // The while loop in the ASSERT() would ordinarily have the potential to cause
  // a use-after-move because the second iteration of the loop would be using a
  // variable that had been moved from in the first iteration. Check that the
  // CFG knows that the second iteration of the loop is never reached because
  // the FailureLogger destructor is marked [[noreturn]].
  ASSERT(operationOnA(std::move(a)));
}
#undef ASSERT
////////////////////////////////////////////////////////////////////////////////
// Tests for reinitializations
template <class T>
void swap(T &a, T &b) {
  T tmp = std::move(a);
  a = std::move(b);
  b = std::move(tmp);
}
void assignments(int i) {
  // Don't report a use-after-move if the variable was assigned to in the
  // meantime.
  {
    A a;
    std::move(a);
    a = A();
    a.foo();
  }
  // The assignment should also be recognized if move, assignment and use don't
  // all happen in the same block (but the assignment is still guaranteed to
  // prevent a use-after-move).
  {
    A a;
    if (i == 1) {
      std::move(a);
      a = A();
    }
    if (i == 2) {
      a.foo();
    }
  }
  {
    A a;
    if (i == 1) {
      std::move(a);
    }
    if (i == 2) {
      a = A();
      a.foo();
    }
  }
  // The built-in assignment operator should also be recognized as a
  // reinitialization. (std::move() may be called on built-in types in template
  // code.)
  {
    int a1 = 1, a2 = 2;
    swap(a1, a2);
  }
  // A std::move() after the assignment makes the variable invalid again.
  {
    A a;
    std::move(a);
    a = A();
    std::move(a);
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // Report a use-after-move if we can't be sure that the variable was assigned
  // to.
  {
    A a;
    std::move(a);
    if (i < 10) {
      a = A();
    }
    if (i > 5) {
      a.foo();
      // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-7]]:5: note: move occurred here
    }
  }
}
// Passing the object to a function through a non-const pointer or reference
// counts as a re-initialization.
void passByNonConstPointer(A *);
void passByNonConstReference(A &);
void passByNonConstPointerIsReinit() {
  {
    A a;
    std::move(a);
    passByNonConstPointer(&a);
    a.foo();
  }
  {
    A a;
    std::move(a);
    passByNonConstReference(a);
    a.foo();
  }
}
// Passing the object through a const pointer or reference counts as a use --
// since the called function cannot reinitialize the object.
void passByConstPointer(const A *);
void passByConstReference(const A &);
void passByConstPointerIsUse() {
  {
    // Declaring 'a' as const so that no ImplicitCastExpr is inserted into the
    // AST -- we wouldn't want the check to rely solely on that to detect a
    // const pointer argument.
    const A a;
    std::move(a);
    passByConstPointer(&a);
    // CHECK-NOTES: [[@LINE-1]]:25: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  const A a;
  std::move(a);
  passByConstReference(a);
  // CHECK-NOTES: [[@LINE-1]]:24: warning: 'a' used after it was moved
  // CHECK-NOTES: [[@LINE-3]]:3: note: move occurred here
}
// Clearing a standard container using clear() is treated as a
// re-initialization.
void standardContainerClearIsReinit() {
  {
    std::string container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::vector<int> container;
    std::move(container);
    container.clear();
    container.empty();
    auto container2 = container;
    std::move(container2);
    container2.clear();
    container2.empty();
  }
  {
    std::deque<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::forward_list<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::list<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::set<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::map<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::multiset<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::multimap<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_set<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_map<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_multiset<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  {
    std::unordered_multimap<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  // This should also work for typedefs of standard containers.
  {
    typedef std::vector<int> IntVector;
    IntVector container;
    std::move(container);
    container.clear();
    container.empty();
  }
  // But it shouldn't work for non-standard containers.
  {
    // This might be called "vector", but it's not in namespace "std".
    struct vector {
      void clear() {}
    } container;
    std::move(container);
    container.clear();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container' used after it was
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // An intervening clear() on a different container does not reinitialize.
  {
    std::vector<int> container1, container2;
    std::move(container1);
    container2.clear();
    container1.empty();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container1' used after it was
    // CHECK-NOTES: [[@LINE-4]]:5: note: move occurred here
  }
}
// Clearing a standard container using assign() is treated as a
// re-initialization.
void standardContainerAssignIsReinit() {
  {
    std::string container;
    std::move(container);
    container.assign(0, ' ');
    container.empty();
  }
  {
    std::vector<int> container;
    std::move(container);
    container.assign(0, 0);
    container.empty();
  }
  {
    std::deque<int> container;
    std::move(container);
    container.assign(0, 0);
    container.empty();
  }
  {
    std::forward_list<int> container;
    std::move(container);
    container.assign(0, 0);
    container.empty();
  }
  {
    std::list<int> container;
    std::move(container);
    container.clear();
    container.empty();
  }
  // But it doesn't work for non-standard containers.
  {
    // This might be called "vector", but it's not in namespace "std".
    struct vector {
      void assign(std::size_t, int) {}
    } container;
    std::move(container);
    container.assign(0, 0);
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container' used after it was
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  // An intervening assign() on a different container does not reinitialize.
  {
    std::vector<int> container1, container2;
    std::move(container1);
    container2.assign(0, 0);
    container1.empty();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'container1' used after it was
    // CHECK-NOTES: [[@LINE-4]]:5: note: move occurred here
  }
}
// Resetting the standard smart pointer types using reset() is treated as a
// re-initialization. (We don't test std::weak_ptr<> because it can't be
// dereferenced directly.)
void standardSmartPointerResetIsReinit() {
  {
    std::unique_ptr<A> ptr;
    std::move(ptr);
    ptr.reset(new A);
    *ptr;
  }
  {
    std::shared_ptr<A> ptr;
    std::move(ptr);
    ptr.reset(new A);
    *ptr;
  }
}
void reinitAnnotation() {
  {
    AnnotatedContainer<int> obj;
    std::move(obj);
    obj.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'obj' used after it was
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    AnnotatedContainer<int> obj;
    std::move(obj);
    obj.clear();
    obj.foo();
  }
  {
    // Calling clear() on a different object to the one that was moved is not
    // considered a reinitialization.
    AnnotatedContainer<int> obj1, obj2;
    std::move(obj1);
    obj2.clear();
    obj1.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'obj1' used after it was
    // CHECK-NOTES: [[@LINE-4]]:5: note: move occurred here
  }
}
////////////////////////////////////////////////////////////////////////////////
// Tests related to order of evaluation within expressions
// Relative sequencing of move and use.
void passByRvalueReference(int i, A &&a);
void passByValue(int i, A a);
void passByValue(A a, int i);
A g(A, A &&);
int intFromA(A &&);
int intFromInt(int);
void sequencingOfMoveAndUse() {
  // This case is fine because the move only happens inside
  // passByRvalueReference(). At this point, a.getInt() is guaranteed to have
  // been evaluated.
  {
    A a;
    passByRvalueReference(a.getInt(), std::move(a));
  }
  // However, if we pass by value, the move happens when the move constructor is
  // called to create a temporary, and this happens before the call to
  // passByValue(). Because the order in which arguments are evaluated isn't
  // defined, the move may happen before the call to a.getInt().
  //
  // Check that we warn about a potential use-after move for both orderings of
  // a.getInt() and std::move(a), independent of the order in which the
  // arguments happen to get evaluated by the compiler.
  {
    A a;
    passByValue(a.getInt(), std::move(a));
    // CHECK-NOTES: [[@LINE-1]]:17: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:29: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:17: note: the use and move are unsequenced
  }
  {
    A a;
    passByValue(std::move(a), a.getInt());
    // CHECK-NOTES: [[@LINE-1]]:31: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:17: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:31: note: the use and move are unsequenced
  }
  // An even more convoluted example.
  {
    A a;
    g(g(a, std::move(a)), g(a, std::move(a)));
    // CHECK-NOTES: [[@LINE-1]]:9: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:27: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:9: note: the use and move are unsequenced
    // CHECK-NOTES: [[@LINE-4]]:29: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-5]]:7: note: move occurred here
    // CHECK-NOTES: [[@LINE-6]]:29: note: the use and move are unsequenced
  }
  // This case is fine because the actual move only happens inside the call to
  // operator=(). a.getInt(), by necessity, is evaluated before that call.
  {
    A a;
    A vec[1];
    vec[a.getInt()] = std::move(a);
  }
  // However, in the following case, the move happens before the assignment, and
  // so the order of evaluation is not guaranteed.
  {
    A a;
    int v[3];
    v[a.getInt()] = intFromA(std::move(a));
    // CHECK-NOTES: [[@LINE-1]]:7: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:21: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:7: note: the use and move are unsequenced
  }
  {
    A a;
    int v[3];
    v[intFromA(std::move(a))] = intFromInt(a.i);
    // CHECK-NOTES: [[@LINE-1]]:44: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:7: note: move occurred here
    // CHECK-NOTES: [[@LINE-3]]:44: note: the use and move are unsequenced
  }
}
// Relative sequencing of move and reinitialization. If the two are unsequenced,
// we conservatively assume that the move happens after the reinitialization,
// i.e. the that object does not get reinitialized after the move.
A MutateA(A a);
void passByValue(A a1, A a2);
void sequencingOfMoveAndReinit() {
  // Move and reinitialization as function arguments (which are indeterminately
  // sequenced). Again, check that we warn for both orderings.
  {
    A a;
    passByValue(std::move(a), (a = A()));
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:17: note: move occurred here
  }
  {
    A a;
    passByValue((a = A()), std::move(a));
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:28: note: move occurred here
  }
  // Common usage pattern: Move the object to a function that mutates it in some
  // way, then reassign the result to the object. This pattern is fine.
  {
    A a;
    a = MutateA(std::move(a));
    a.foo();
  }
}
// Relative sequencing of reinitialization and use. If the two are unsequenced,
// we conservatively assume that the reinitialization happens after the use,
// i.e. that the object is not reinitialized at the point in time when it is
// used.
void sequencingOfReinitAndUse() {
  // Reinitialization and use in function arguments. Again, check both possible
  // orderings.
  {
    A a;
    std::move(a);
    passByValue(a.getInt(), (a = A()));
    // CHECK-NOTES: [[@LINE-1]]:17: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
  {
    A a;
    std::move(a);
    passByValue((a = A()), a.getInt());
    // CHECK-NOTES: [[@LINE-1]]:28: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:5: note: move occurred here
  }
}
// The comma operator sequences its operands.
void commaOperatorSequences() {
  {
    A a;
    A(std::move(a))
    , (a = A());
    a.foo();
  }
  {
    A a;
    (a = A()), A(std::move(a));
    a.foo();
    // CHECK-NOTES: [[@LINE-1]]:5: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-3]]:16: note: move occurred here
  }
}
// An initializer list sequences its initialization clauses.
void initializerListSequences() {
  {
    struct S1 {
      int i;
      A a;
    };
    A a;
    S1 s1{a.getInt(), std::move(a)};
  }
  {
    struct S2 {
      A a;
      int i;
    };
    A a;
    S2 s2{std::move(a), a.getInt()};
    // CHECK-NOTES: [[@LINE-1]]:25: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:11: note: move occurred here
  }
}
// A declaration statement containing multiple declarations sequences the
// initializer expressions.
void declarationSequences() {
  {
    A a;
    A a1 = a, a2 = std::move(a);
  }
  {
    A a;
    A a1 = std::move(a), a2 = a;
    // CHECK-NOTES: [[@LINE-1]]:31: warning: 'a' used after it was moved
    // CHECK-NOTES: [[@LINE-2]]:12: note: move occurred here
  }
}
// The logical operators && and || sequence their operands.
void logicalOperatorsSequence() {
  {
    A a;
    if (a.getInt() > 0 && A(std::move(a)).getInt() > 0) {
      A().foo();
    }
  }
  // A variation: Negate the result of the && (which pushes the && further down
  // into the AST).
  {
    A a;
    if (!(a.getInt() > 0 && A(std::move(a)).getInt() > 0)) {
      A().foo();
    }
  }
  {
    A a;
    if (A(std::move(a)).getInt() > 0 && a.getInt() > 0) {
      // CHECK-NOTES: [[@LINE-1]]:41: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-2]]:9: note: move occurred here
      A().foo();
    }
  }
  {
    A a;
    if (a.getInt() > 0 || A(std::move(a)).getInt() > 0) {
      A().foo();
    }
  }
  {
    A a;
    if (A(std::move(a)).getInt() > 0 || a.getInt() > 0) {
      // CHECK-NOTES: [[@LINE-1]]:41: warning: 'a' used after it was moved
      // CHECK-NOTES: [[@LINE-2]]:9: note: move occurred here
      A().foo();
    }
  }
}
// A range-based for sequences the loop variable declaration before the body.
void forRangeSequences() {
  A v[2] = {A(), A()};
  for (A &a : v) {
    std::move(a);
  }
}
// If a variable is declared in an if, while or switch statement, the init
// statement (for if and switch) is sequenced before the variable declaration,
// which in turn is sequenced before the evaluation of the condition.
void ifWhileAndSwitchSequenceInitDeclAndCondition() {
  for (int i = 0; i < 10; ++i) {
    A a1;
    if (A a2 = std::move(a1)) {
      std::move(a2);
    }
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    if (A a2 = std::move(a1); A a3 = std::move(a2)) {
      std::move(a3);
    }
  }
  while (A a = A()) {
    std::move(a);
  }
  for (int i = 0; i < 10; ++i) {
    A a1;
    switch (A a2 = a1; A a3 = std::move(a2)) {
      case true:
        std::move(a3);
    }
  }
}
// Some statements in templates (e.g. null, break and continue statements) may
// be shared between the uninstantiated and instantiated versions of the
// template and therefore have multiple parents. Make sure the sequencing code
// handles this correctly.
template <class> void nullStatementSequencesInTemplate() {
  int c = 0;
  (void)c;
  ;
  std::move(c);
}
template void nullStatementSequencesInTemplate<int>();
namespace PR33020 {
class D {
  ~D();
};
struct A {
  D d;
};
class B {
  A a;
};
template <typename T>
class C : T, B {
  void m_fn1() {
    int a;
    std::move(a);
    C c;
  }
};
}
 |