1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
//===--- Transformer.cpp - Transformer library implementation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Refactoring/Transformer.h"
#include "clang/AST/Expr.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Tooling/Refactoring/AtomicChange.h"
#include "clang/Tooling/Refactoring/SourceCode.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include <deque>
#include <string>
#include <utility>
#include <vector>
using namespace clang;
using namespace tooling;
using ast_matchers::MatchFinder;
using ast_matchers::internal::DynTypedMatcher;
using ast_type_traits::ASTNodeKind;
using ast_type_traits::DynTypedNode;
using llvm::Error;
using llvm::StringError;
using MatchResult = MatchFinder::MatchResult;
// Did the text at this location originate in a macro definition (aka. body)?
// For example,
//
// #define NESTED(x) x
// #define MACRO(y) { int y = NESTED(3); }
// if (true) MACRO(foo)
//
// The if statement expands to
//
// if (true) { int foo = 3; }
// ^ ^
// Loc1 Loc2
//
// For SourceManager SM, SM.isMacroArgExpansion(Loc1) and
// SM.isMacroArgExpansion(Loc2) are both true, but isOriginMacroBody(sm, Loc1)
// is false, because "foo" originated in the source file (as an argument to a
// macro), whereas isOriginMacroBody(SM, Loc2) is true, because "3" originated
// in the definition of MACRO.
static bool isOriginMacroBody(const clang::SourceManager &SM,
clang::SourceLocation Loc) {
while (Loc.isMacroID()) {
if (SM.isMacroBodyExpansion(Loc))
return true;
// Otherwise, it must be in an argument, so we continue searching up the
// invocation stack. getImmediateMacroCallerLoc() gives the location of the
// argument text, inside the call text.
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return false;
}
Expected<SmallVector<tooling::detail::Transformation, 1>>
tooling::detail::translateEdits(const MatchResult &Result,
llvm::ArrayRef<ASTEdit> Edits) {
SmallVector<tooling::detail::Transformation, 1> Transformations;
for (const auto &Edit : Edits) {
Expected<CharSourceRange> Range = Edit.TargetRange(Result);
if (!Range)
return Range.takeError();
if (Range->isInvalid() ||
isOriginMacroBody(*Result.SourceManager, Range->getBegin()))
return SmallVector<Transformation, 0>();
auto Replacement = Edit.Replacement(Result);
if (!Replacement)
return Replacement.takeError();
tooling::detail::Transformation T;
T.Range = *Range;
T.Replacement = std::move(*Replacement);
Transformations.push_back(std::move(T));
}
return Transformations;
}
ASTEdit tooling::change(RangeSelector S, TextGenerator Replacement) {
ASTEdit E;
E.TargetRange = std::move(S);
E.Replacement = std::move(Replacement);
return E;
}
RewriteRule tooling::makeRule(DynTypedMatcher M, SmallVector<ASTEdit, 1> Edits,
TextGenerator Explanation) {
return RewriteRule{{RewriteRule::Case{
std::move(M), std::move(Edits), std::move(Explanation), {}}}};
}
void tooling::addInclude(RewriteRule &Rule, StringRef Header,
IncludeFormat Format) {
for (auto &Case : Rule.Cases)
Case.AddedIncludes.emplace_back(Header.str(), Format);
}
// Determines whether A is a base type of B in the class hierarchy, including
// the implicit relationship of Type and QualType.
static bool isBaseOf(ASTNodeKind A, ASTNodeKind B) {
static auto TypeKind = ASTNodeKind::getFromNodeKind<Type>();
static auto QualKind = ASTNodeKind::getFromNodeKind<QualType>();
/// Mimic the implicit conversions of Matcher<>.
/// - From Matcher<Type> to Matcher<QualType>
/// - From Matcher<Base> to Matcher<Derived>
return (A.isSame(TypeKind) && B.isSame(QualKind)) || A.isBaseOf(B);
}
// Try to find a common kind to which all of the rule's matchers can be
// converted.
static ASTNodeKind
findCommonKind(const SmallVectorImpl<RewriteRule::Case> &Cases) {
assert(!Cases.empty() && "Rule must have at least one case.");
ASTNodeKind JoinKind = Cases[0].Matcher.getSupportedKind();
// Find a (least) Kind K, for which M.canConvertTo(K) holds, for all matchers
// M in Rules.
for (const auto &Case : Cases) {
auto K = Case.Matcher.getSupportedKind();
if (isBaseOf(JoinKind, K)) {
JoinKind = K;
continue;
}
if (K.isSame(JoinKind) || isBaseOf(K, JoinKind))
// JoinKind is already the lowest.
continue;
// K and JoinKind are unrelated -- there is no least common kind.
return ASTNodeKind();
}
return JoinKind;
}
// Binds each rule's matcher to a unique (and deterministic) tag based on
// `TagBase`.
static std::vector<DynTypedMatcher>
taggedMatchers(StringRef TagBase,
const SmallVectorImpl<RewriteRule::Case> &Cases) {
std::vector<DynTypedMatcher> Matchers;
Matchers.reserve(Cases.size());
size_t count = 0;
for (const auto &Case : Cases) {
std::string Tag = (TagBase + Twine(count)).str();
++count;
auto M = Case.Matcher.tryBind(Tag);
assert(M && "RewriteRule matchers should be bindable.");
Matchers.push_back(*std::move(M));
}
return Matchers;
}
// Simply gathers the contents of the various rules into a single rule. The
// actual work to combine these into an ordered choice is deferred to matcher
// registration.
RewriteRule tooling::applyFirst(ArrayRef<RewriteRule> Rules) {
RewriteRule R;
for (auto &Rule : Rules)
R.Cases.append(Rule.Cases.begin(), Rule.Cases.end());
return R;
}
static DynTypedMatcher joinCaseMatchers(const RewriteRule &Rule) {
assert(!Rule.Cases.empty() && "Rule must have at least one case.");
if (Rule.Cases.size() == 1)
return Rule.Cases[0].Matcher;
auto CommonKind = findCommonKind(Rule.Cases);
assert(!CommonKind.isNone() && "Cases must have compatible matchers.");
return DynTypedMatcher::constructVariadic(
DynTypedMatcher::VO_AnyOf, CommonKind, taggedMatchers("Tag", Rule.Cases));
}
DynTypedMatcher tooling::detail::buildMatcher(const RewriteRule &Rule) {
DynTypedMatcher M = joinCaseMatchers(Rule);
M.setAllowBind(true);
// `tryBind` is guaranteed to succeed, because `AllowBind` was set to true.
return *M.tryBind(RewriteRule::RootID);
}
// Finds the case that was "selected" -- that is, whose matcher triggered the
// `MatchResult`.
const RewriteRule::Case &
tooling::detail::findSelectedCase(const MatchResult &Result,
const RewriteRule &Rule) {
if (Rule.Cases.size() == 1)
return Rule.Cases[0];
auto &NodesMap = Result.Nodes.getMap();
for (size_t i = 0, N = Rule.Cases.size(); i < N; ++i) {
std::string Tag = ("Tag" + Twine(i)).str();
if (NodesMap.find(Tag) != NodesMap.end())
return Rule.Cases[i];
}
llvm_unreachable("No tag found for this rule.");
}
constexpr llvm::StringLiteral RewriteRule::RootID;
void Transformer::registerMatchers(MatchFinder *MatchFinder) {
MatchFinder->addDynamicMatcher(tooling::detail::buildMatcher(Rule), this);
}
void Transformer::run(const MatchResult &Result) {
if (Result.Context->getDiagnostics().hasErrorOccurred())
return;
// Verify the existence and validity of the AST node that roots this rule.
auto &NodesMap = Result.Nodes.getMap();
auto Root = NodesMap.find(RewriteRule::RootID);
assert(Root != NodesMap.end() && "Transformation failed: missing root node.");
SourceLocation RootLoc = Result.SourceManager->getExpansionLoc(
Root->second.getSourceRange().getBegin());
assert(RootLoc.isValid() && "Invalid location for Root node of match.");
RewriteRule::Case Case = tooling::detail::findSelectedCase(Result, Rule);
auto Transformations = tooling::detail::translateEdits(Result, Case.Edits);
if (!Transformations) {
Consumer(Transformations.takeError());
return;
}
if (Transformations->empty()) {
// No rewrite applied (but no error encountered either).
RootLoc.print(llvm::errs() << "note: skipping match at loc ",
*Result.SourceManager);
llvm::errs() << "\n";
return;
}
// Record the results in the AtomicChange.
AtomicChange AC(*Result.SourceManager, RootLoc);
for (const auto &T : *Transformations) {
if (auto Err = AC.replace(*Result.SourceManager, T.Range, T.Replacement)) {
Consumer(std::move(Err));
return;
}
}
for (const auto &I : Case.AddedIncludes) {
auto &Header = I.first;
switch (I.second) {
case IncludeFormat::Quoted:
AC.addHeader(Header);
break;
case IncludeFormat::Angled:
AC.addHeader((llvm::Twine("<") + Header + ">").str());
break;
}
}
Consumer(std::move(AC));
}
|