1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// RUN: %clang_cc1 -std=c++98 -triple x86_64-unknown-unknown %s -verify -fexceptions -fcxx-exceptions -pedantic-errors \
// RUN: -Wno-variadic-macros -Wno-c11-extensions
// RUN: %clang_cc1 -std=c++11 -triple x86_64-unknown-unknown %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// RUN: %clang_cc1 -std=c++14 -triple x86_64-unknown-unknown %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
// RUN: %clang_cc1 -std=c++1z -triple x86_64-unknown-unknown %s -verify -fexceptions -fcxx-exceptions -pedantic-errors
#if __cplusplus < 201103L
#define static_assert(...) _Static_assert(__VA_ARGS__)
#endif
namespace dr2083 { // dr2083: partial
#if __cplusplus >= 201103L
void non_const_mem_ptr() {
struct A {
int x;
int y;
};
constexpr A a = {1, 2};
struct B {
int A::*p;
constexpr int g() const {
// OK, not an odr-use of 'a'.
return a.*p;
};
};
static_assert(B{&A::x}.g() == 1, "");
static_assert(B{&A::y}.g() == 2, "");
}
#endif
const int a = 1;
int b;
// Note, references only get special odr-use / constant initializxer
// treatment in C++11 onwards. We continue to apply that even after DR2083.
void ref_to_non_const() {
int c;
const int &ra = a; // expected-note 0-1{{here}}
int &rb = b; // expected-note 0-1{{here}}
int &rc = c; // expected-note {{here}}
struct A {
int f() {
int a = ra;
int b = rb;
#if __cplusplus < 201103L
// expected-error@-3 {{in enclosing function}}
// expected-error@-3 {{in enclosing function}}
#endif
int c = rc; // expected-error {{in enclosing function}}
return a + b + c;
}
};
}
#if __cplusplus >= 201103L
struct NoMut1 { int a, b; };
struct NoMut2 { NoMut1 m; };
struct NoMut3 : NoMut1 {
constexpr NoMut3(int a, int b) : NoMut1{a, b} {}
};
struct Mut1 {
int a;
mutable int b;
};
struct Mut2 { Mut1 m; };
struct Mut3 : Mut1 {
constexpr Mut3(int a, int b) : Mut1{a, b} {}
};
void mutable_subobjects() {
constexpr NoMut1 nm1 = {1, 2};
constexpr NoMut2 nm2 = {1, 2};
constexpr NoMut3 nm3 = {1, 2};
constexpr Mut1 m1 = {1, 2}; // expected-note {{declared here}}
constexpr Mut2 m2 = {1, 2}; // expected-note {{declared here}}
constexpr Mut3 m3 = {1, 2}; // expected-note {{declared here}}
struct A {
void f() {
static_assert(nm1.a == 1, "");
static_assert(nm2.m.a == 1, "");
static_assert(nm3.a == 1, "");
// Can't even access a non-mutable member of a variable containing mutable fields.
static_assert(m1.a == 1, ""); // expected-error {{enclosing function}}
static_assert(m2.m.a == 1, ""); // expected-error {{enclosing function}}
static_assert(m3.a == 1, ""); // expected-error {{enclosing function}}
}
};
}
#endif
void ellipsis() {
void ellipsis(...);
struct A {};
const int n = 0;
#if __cplusplus >= 201103L
constexpr
#endif
A a = {}; // expected-note {{here}}
struct B {
void f() {
ellipsis(n);
// Even though this is technically modelled as an lvalue-to-rvalue
// conversion, it calls a constructor and binds 'a' to a reference, so
// it results in an odr-use.
ellipsis(a); // expected-error {{enclosing function}}
}
};
}
#if __cplusplus >= 201103L
void volatile_lval() {
struct A { int n; };
constexpr A a = {0}; // expected-note {{here}}
struct B {
void f() {
// An lvalue-to-rvalue conversion of a volatile lvalue always results
// in odr-use.
int A::*p = &A::n;
int x = a.*p;
volatile int A::*q = p;
int y = a.*q; // expected-error {{enclosing function}}
}
};
}
#endif
void discarded_lval() {
struct A { int x; mutable int y; volatile int z; };
A a; // expected-note 1+{{here}}
int &r = a.x; // expected-note {{here}}
struct B {
void f() {
a.x; // expected-warning {{unused}}
a.*&A::x; // expected-warning {{unused}}
true ? a.x : a.y; // expected-warning {{unused}}
(void)a.x;
a.x, discarded_lval(); // expected-warning {{unused}}
#if 1 // FIXME: These errors are all incorrect; the above code is valid.
// expected-error@-6 {{enclosing function}}
// expected-error@-6 {{enclosing function}}
// expected-error@-6 2{{enclosing function}}
// expected-error@-6 {{enclosing function}}
// expected-error@-6 {{enclosing function}}
#endif
// 'volatile' qualifier triggers an lvalue-to-rvalue conversion.
a.z; // expected-error {{enclosing function}}
#if __cplusplus < 201103L
// expected-warning@-2 {{assign into a variable}}
#endif
// References always get "loaded" to determine what they reference,
// even if the result is discarded.
r; // expected-error {{enclosing function}} expected-warning {{unused}}
}
};
}
namespace dr_example_1 {
extern int globx;
int main() {
const int &x = globx;
struct A {
#if __cplusplus < 201103L
// expected-error@+2 {{enclosing function}} expected-note@-3 {{here}}
#endif
const int *foo() { return &x; }
} a;
return *a.foo();
}
}
#if __cplusplus >= 201103L
namespace dr_example_2 {
struct A {
int q;
constexpr A(int q) : q(q) {}
constexpr A(const A &a) : q(a.q * 2) {} // (note, not called)
};
int main(void) {
constexpr A a(42);
constexpr int aq = a.q;
struct Q {
int foo() { return a.q; }
} q;
return q.foo();
}
// Checking odr-use does not invent an lvalue-to-rvalue conversion (and
// hence copy construction) on the potential result variable.
struct B {
int b = 42;
constexpr B() {}
constexpr B(const B&) = delete;
};
void f() {
constexpr B b;
struct Q {
constexpr int foo() const { return b.b; }
};
static_assert(Q().foo() == 42, "");
}
}
#endif
}
namespace dr2094 { // dr2094: 5
struct A { int n; };
struct B { volatile int n; };
static_assert(__is_trivially_copyable(volatile int), "");
static_assert(__is_trivially_copyable(const volatile int), "");
static_assert(__is_trivially_copyable(const volatile int[]), "");
static_assert(__is_trivially_copyable(A), "");
static_assert(__is_trivially_copyable(volatile A), "");
static_assert(__is_trivially_copyable(const volatile A), "");
static_assert(__is_trivially_copyable(const volatile A[]), "");
static_assert(__is_trivially_copyable(B), "");
static_assert(__is_trivially_constructible(A, A const&), "");
static_assert(__is_trivially_constructible(B, B const&), "");
static_assert(__is_trivially_assignable(A, const A&), "");
static_assert(__is_trivially_assignable(B, const B&), "");
}
|