| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 
 | //===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Double Precision Multiply
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
#define EXPA r4
#define EXPB r5
#define EXPB_A r5:4
#define ZTMP r7:6
#define ZTMPH r7
#define ZTMPL r6
#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12
#define BTMP r9:8
#define BTMPH r9
#define BTMPL r8
#define ATMP2 r11:10
#define ATMP2H r11
#define ATMP2L r10
#define EXPDIFF r15
#define EXTRACTOFF r14
#define EXTRACTAMT r15:14
#define TMP r28
#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1024
#define MANTISSA_TO_INT_BIAS 52
#define SR_BIT_INEXACT 5
#ifndef SR_ROUND_OFF
#define SR_ROUND_OFF 22
#endif
#define NORMAL p3
#define BIGB p2
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG
	.text
	.global __hexagon_adddf3
	.global __hexagon_subdf3
	.type __hexagon_adddf3, @function
	.type __hexagon_subdf3, @function
Q6_ALIAS(adddf3)
FAST_ALIAS(adddf3)
FAST2_ALIAS(adddf3)
Q6_ALIAS(subdf3)
FAST_ALIAS(subdf3)
FAST2_ALIAS(subdf3)
	.p2align 5
__hexagon_adddf3:
	{
		EXPA = extractu(AH,#EXPBITS,#HI_MANTBITS)
		EXPB = extractu(BH,#EXPBITS,#HI_MANTBITS)
		ATMP = combine(##0x20000000,#0)
	}
	{
		NORMAL = dfclass(A,#2)
		NORMAL = dfclass(B,#2)
		BTMP = ATMP
		BIGB = cmp.gtu(EXPB,EXPA)			// Is B substantially greater than A?
	}
	{
		if (!NORMAL) jump .Ladd_abnormal		// If abnormal, go to special code
		if (BIGB) A = B				// if B >> A, swap A and B
		if (BIGB) B = A				// If B >> A, swap A and B
		if (BIGB) EXPB_A = combine(EXPA,EXPB)	// swap exponents
	}
	{
		ATMP = insert(A,#MANTBITS,#EXPBITS-2)	// Q1.62
		BTMP = insert(B,#MANTBITS,#EXPBITS-2)	// Q1.62
		EXPDIFF = sub(EXPA,EXPB)
		ZTMP = combine(#62,#1)
	}
#undef BIGB
#undef NORMAL
#define B_POS p3
#define A_POS p2
#define NO_STICKIES p1
.Ladd_continue:
	{
		EXPDIFF = min(EXPDIFF,ZTMPH)		// If exponent difference >= ~60,
							// will collapse to sticky bit
		ATMP2 = neg(ATMP)
		A_POS = cmp.gt(AH,#-1)
		EXTRACTOFF = #0
	}
	{
		if (!A_POS) ATMP = ATMP2
		ATMP2 = extractu(BTMP,EXTRACTAMT)
		BTMP = ASR(BTMP,EXPDIFF)
#undef EXTRACTAMT
#undef EXPDIFF
#undef EXTRACTOFF
#define ZERO r15:14
		ZERO = #0
	}
	{
		NO_STICKIES = cmp.eq(ATMP2,ZERO)
		if (!NO_STICKIES.new) BTMPL = or(BTMPL,ZTMPL)
		EXPB = add(EXPA,#-BIAS-60)
		B_POS = cmp.gt(BH,#-1)
	}
	{
		ATMP = add(ATMP,BTMP)			// ADD!!!
		ATMP2 = sub(ATMP,BTMP)			// Negate and ADD --> SUB!!!
		ZTMP = combine(#54,##2045)
	}
	{
		p0 = cmp.gtu(EXPA,ZTMPH)		// must be pretty high in case of large cancellation
		p0 = !cmp.gtu(EXPA,ZTMPL)
		if (!p0.new) jump:nt .Ladd_ovf_unf
		if (!B_POS) ATMP = ATMP2		// if B neg, pick difference
	}
	{
		A = convert_d2df(ATMP)			// Convert to Double Precision, taking care of flags, etc.  So nice!
		p0 = cmp.eq(ATMPH,#0)
		p0 = cmp.eq(ATMPL,#0)
		if (p0.new) jump:nt .Ladd_zero		// or maybe conversion handles zero case correctly?
	}
	{
		AH += asl(EXPB,#HI_MANTBITS)
		jumpr r31
	}
	.falign
__hexagon_subdf3:
	{
		BH = togglebit(BH,#31)
		jump __qdsp_adddf3
	}
	.falign
.Ladd_zero:
	// True zero, full cancellation
	// +0 unless round towards negative infinity
	{
		TMP = USR
		A = #0
		BH = #1
	}
	{
		TMP = extractu(TMP,#2,#22)
		BH = asl(BH,#31)
	}
	{
		p0 = cmp.eq(TMP,#2)
		if (p0.new) AH = xor(AH,BH)
		jumpr r31
	}
	.falign
.Ladd_ovf_unf:
	// Overflow or Denormal is possible
	// Good news: Underflow flag is not possible!
	// ATMP has 2's complement value
	//
	// EXPA has A's exponent, EXPB has EXPA-BIAS-60
	//
	// Convert, extract exponent, add adjustment.
	// If > 2046, overflow
	// If <= 0, denormal
	//
	// Note that we've not done our zero check yet, so do that too
	{
		A = convert_d2df(ATMP)
		p0 = cmp.eq(ATMPH,#0)
		p0 = cmp.eq(ATMPL,#0)
		if (p0.new) jump:nt .Ladd_zero
	}
	{
		TMP = extractu(AH,#EXPBITS,#HI_MANTBITS)
		AH += asl(EXPB,#HI_MANTBITS)
	}
	{
		EXPB = add(EXPB,TMP)
		B = combine(##0x00100000,#0)
	}
	{
		p0 = cmp.gt(EXPB,##BIAS+BIAS-2)
		if (p0.new) jump:nt .Ladd_ovf
	}
	{
		p0 = cmp.gt(EXPB,#0)
		if (p0.new) jumpr:t r31
		TMP = sub(#1,EXPB)
	}
	{
		B = insert(A,#MANTBITS,#0)
		A = ATMP
	}
	{
		B = lsr(B,TMP)
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}
	.falign
.Ladd_ovf:
	// We get either max finite value or infinity.  Either way, overflow+inexact
	{
		A = ATMP				// 2's complement value
		TMP = USR
		ATMP = combine(##0x7fefffff,#-1)	// positive max finite
	}
	{
		EXPB = extractu(TMP,#2,#SR_ROUND_OFF)	// rounding bits
		TMP = or(TMP,#0x28)			// inexact + overflow
		BTMP = combine(##0x7ff00000,#0)		// positive infinity
	}
	{
		USR = TMP
		EXPB ^= lsr(AH,#31)			// Does sign match rounding?
		TMP = EXPB				// unmodified rounding mode
	}
	{
		p0 = !cmp.eq(TMP,#1)			// If not round-to-zero and
		p0 = !cmp.eq(EXPB,#2)			// Not rounding the other way,
		if (p0.new) ATMP = BTMP			// we should get infinity
	}
	{
		A = insert(ATMP,#63,#0)			// insert inf/maxfinite, leave sign
	}
	{
		p0 = dfcmp.eq(A,A)
		jumpr r31
	}
.Ladd_abnormal:
	{
		ATMP = extractu(A,#63,#0)		// strip off sign
		BTMP = extractu(B,#63,#0)		// strip off sign
	}
	{
		p3 = cmp.gtu(ATMP,BTMP)
		if (!p3.new) A = B			// sort values
		if (!p3.new) B = A			// sort values
	}
	{
		// Any NaN --> NaN, possibly raise invalid if sNaN
		p0 = dfclass(A,#0x0f)		// A not NaN?
		if (!p0.new) jump:nt .Linvalid_nan_add
		if (!p3) ATMP = BTMP
		if (!p3) BTMP = ATMP
	}
	{
		// Infinity + non-infinity number is infinity
		// Infinity + infinity --> inf or nan
		p1 = dfclass(A,#0x08)		// A is infinity
		if (p1.new) jump:nt .Linf_add
	}
	{
		p2 = dfclass(B,#0x01)		// B is zero
		if (p2.new) jump:nt .LB_zero	// so return A or special 0+0
		ATMP = #0
	}
	// We are left with adding one or more subnormals
	{
		p0 = dfclass(A,#4)
		if (p0.new) jump:nt .Ladd_two_subnormal
		ATMP = combine(##0x20000000,#0)
	}
	{
		EXPA = extractu(AH,#EXPBITS,#HI_MANTBITS)
		EXPB = #1
		// BTMP already ABS(B)
		BTMP = asl(BTMP,#EXPBITS-2)
	}
#undef ZERO
#define EXTRACTOFF r14
#define EXPDIFF r15
	{
		ATMP = insert(A,#MANTBITS,#EXPBITS-2)
		EXPDIFF = sub(EXPA,EXPB)
		ZTMP = combine(#62,#1)
		jump .Ladd_continue
	}
.Ladd_two_subnormal:
	{
		ATMP = extractu(A,#63,#0)
		BTMP = extractu(B,#63,#0)
	}
	{
		ATMP = neg(ATMP)
		BTMP = neg(BTMP)
		p0 = cmp.gt(AH,#-1)
		p1 = cmp.gt(BH,#-1)
	}
	{
		if (p0) ATMP = A
		if (p1) BTMP = B
	}
	{
		ATMP = add(ATMP,BTMP)
	}
	{
		BTMP = neg(ATMP)
		p0 = cmp.gt(ATMPH,#-1)
		B = #0
	}
	{
		if (!p0) A = BTMP
		if (p0) A = ATMP
		BH = ##0x80000000
	}
	{
		if (!p0) AH = or(AH,BH)
		p0 = dfcmp.eq(A,B)
		if (p0.new) jump:nt .Lzero_plus_zero
	}
	{
		jumpr r31
	}
.Linvalid_nan_add:
	{
		TMP = convert_df2sf(A)			// will generate invalid if sNaN
		p0 = dfclass(B,#0x0f)			// if B is not NaN
		if (p0.new) B = A 			// make it whatever A is
	}
	{
		BL = convert_df2sf(B)			// will generate invalid if sNaN
		A = #-1
		jumpr r31
	}
	.falign
.LB_zero:
	{
		p0 = dfcmp.eq(ATMP,A)			// is A also zero?
		if (!p0.new) jumpr:t r31		// If not, just return A
	}
	// 0 + 0 is special
	// if equal integral values, they have the same sign, which is fine for all rounding
	// modes.
	// If unequal in sign, we get +0 for all rounding modes except round down
.Lzero_plus_zero:
	{
		p0 = cmp.eq(A,B)
		if (p0.new) jumpr:t r31
	}
	{
		TMP = USR
	}
	{
		TMP = extractu(TMP,#2,#SR_ROUND_OFF)
		A = #0
	}
	{
		p0 = cmp.eq(TMP,#2)
		if (p0.new) AH = ##0x80000000
		jumpr r31
	}
.Linf_add:
	// adding infinities is only OK if they are equal
	{
		p0 = !cmp.eq(AH,BH)			// Do they have different signs
		p0 = dfclass(B,#8)			// And is B also infinite?
		if (!p0.new) jumpr:t r31		// If not, just a normal inf
	}
	{
		BL = ##0x7f800001			// sNAN
	}
	{
		A = convert_sf2df(BL)			// trigger invalid, set NaN
		jumpr r31
	}
END(__hexagon_adddf3)
 |