1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
// checksum. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for
// information.
//
// Polynomials are represented in LSB-first form also known as reversed representation.
//
// See http://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
// for information.
package crc32
import (
"hash"
"sync"
)
// The size of a CRC-32 checksum in bytes.
const Size = 4
// Predefined polynomials.
const (
// IEEE is by far and away the most common CRC-32 polynomial.
// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
IEEE = 0xedb88320
// Castagnoli's polynomial, used in iSCSI.
// Has better error detection characteristics than IEEE.
// http://dx.doi.org/10.1109/26.231911
Castagnoli = 0x82f63b78
// Koopman's polynomial.
// Also has better error detection characteristics than IEEE.
// http://dx.doi.org/10.1109/DSN.2002.1028931
Koopman = 0xeb31d82e
)
// Table is a 256-word table representing the polynomial for efficient processing.
type Table [256]uint32
// castagnoliTable points to a lazily initialized Table for the Castagnoli
// polynomial. MakeTable will always return this value when asked to make a
// Castagnoli table so we can compare against it to find when the caller is
// using this polynomial.
var castagnoliTable *Table
var castagnoliOnce sync.Once
func castagnoliInit() {
castagnoliTable = makeTable(Castagnoli)
}
// IEEETable is the table for the IEEE polynomial.
var IEEETable = makeTable(IEEE)
// slicing8Table is array of 8 Tables
type slicing8Table [8]Table
// iEEETable8 is the slicing8Table for IEEE
var iEEETable8 *slicing8Table
var iEEETable8Once sync.Once
// MakeTable returns the Table constructed from the specified polynomial.
func MakeTable(poly uint32) *Table {
switch poly {
case IEEE:
return IEEETable
case Castagnoli:
castagnoliOnce.Do(castagnoliInit)
return castagnoliTable
}
return makeTable(poly)
}
// makeTable returns the Table constructed from the specified polynomial.
func makeTable(poly uint32) *Table {
t := new(Table)
for i := 0; i < 256; i++ {
crc := uint32(i)
for j := 0; j < 8; j++ {
if crc&1 == 1 {
crc = (crc >> 1) ^ poly
} else {
crc >>= 1
}
}
t[i] = crc
}
return t
}
// makeTable8 returns slicing8Table constructed from the specified polynomial.
func makeTable8(poly uint32) *slicing8Table {
t := new(slicing8Table)
t[0] = *makeTable(poly)
for i := 0; i < 256; i++ {
crc := t[0][i]
for j := 1; j < 8; j++ {
crc = t[0][crc&0xFF] ^ (crc >> 8)
t[j][i] = crc
}
}
return t
}
// digest represents the partial evaluation of a checksum.
type digest struct {
crc uint32
tab *Table
}
// New creates a new hash.Hash32 computing the CRC-32 checksum
// using the polynomial represented by the Table.
func New(tab *Table) hash.Hash32 { return &digest{0, tab} }
// NewIEEE creates a new hash.Hash32 computing the CRC-32 checksum
// using the IEEE polynomial.
func NewIEEE() hash.Hash32 { return New(IEEETable) }
func (d *digest) Size() int { return Size }
func (d *digest) BlockSize() int { return 1 }
func (d *digest) Reset() { d.crc = 0 }
func update(crc uint32, tab *Table, p []byte) uint32 {
crc = ^crc
for _, v := range p {
crc = tab[byte(crc)^v] ^ (crc >> 8)
}
return ^crc
}
// updateSlicingBy8 updates CRC using Slicing-by-8
func updateSlicingBy8(crc uint32, tab *slicing8Table, p []byte) uint32 {
crc = ^crc
for len(p) > 8 {
crc ^= uint32(p[0]) | uint32(p[1])<<8 | uint32(p[2])<<16 | uint32(p[3])<<24
crc = tab[0][p[7]] ^ tab[1][p[6]] ^ tab[2][p[5]] ^ tab[3][p[4]] ^
tab[4][crc>>24] ^ tab[5][(crc>>16)&0xFF] ^
tab[6][(crc>>8)&0xFF] ^ tab[7][crc&0xFF]
p = p[8:]
}
crc = ^crc
return update(crc, &tab[0], p)
}
// Update returns the result of adding the bytes in p to the crc.
func Update(crc uint32, tab *Table, p []byte) uint32 {
if tab == castagnoliTable {
return updateCastagnoli(crc, p)
}
// only use slicing-by-8 when input is larger than 4KB
if tab == IEEETable && len(p) >= 4096 {
iEEETable8Once.Do(func() {
iEEETable8 = makeTable8(IEEE)
})
return updateSlicingBy8(crc, iEEETable8, p)
}
return update(crc, tab, p)
}
func (d *digest) Write(p []byte) (n int, err error) {
d.crc = Update(d.crc, d.tab, p)
return len(p), nil
}
func (d *digest) Sum32() uint32 { return d.crc }
func (d *digest) Sum(in []byte) []byte {
s := d.Sum32()
return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
}
// Checksum returns the CRC-32 checksum of data
// using the polynomial represented by the Table.
func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
// ChecksumIEEE returns the CRC-32 checksum of data
// using the IEEE polynomial.
func ChecksumIEEE(data []byte) uint32 { return Update(0, IEEETable, data) }
|