1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
//===--------------------- Instruction.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines abstractions used by the Pipeline to model register reads,
// register writes and instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/MCA/Instruction.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
namespace mca {
void WriteState::writeStartEvent(unsigned IID, unsigned RegID,
unsigned Cycles) {
CRD.IID = IID;
CRD.RegID = RegID;
CRD.Cycles = Cycles;
DependentWriteCyclesLeft = Cycles;
DependentWrite = nullptr;
}
void ReadState::writeStartEvent(unsigned IID, unsigned RegID, unsigned Cycles) {
assert(DependentWrites);
assert(CyclesLeft == UNKNOWN_CYCLES);
// This read may be dependent on more than one write. This typically occurs
// when a definition is the result of multiple writes where at least one
// write does a partial register update.
// The HW is forced to do some extra bookkeeping to track of all the
// dependent writes, and implement a merging scheme for the partial writes.
--DependentWrites;
if (TotalCycles < Cycles) {
CRD.IID = IID;
CRD.RegID = RegID;
CRD.Cycles = Cycles;
TotalCycles = Cycles;
}
if (!DependentWrites) {
CyclesLeft = TotalCycles;
IsReady = !CyclesLeft;
}
}
void WriteState::onInstructionIssued(unsigned IID) {
assert(CyclesLeft == UNKNOWN_CYCLES);
// Update the number of cycles left based on the WriteDescriptor info.
CyclesLeft = getLatency();
// Now that the time left before write-back is known, notify
// all the users.
for (const std::pair<ReadState *, int> &User : Users) {
ReadState *RS = User.first;
unsigned ReadCycles = std::max(0, CyclesLeft - User.second);
RS->writeStartEvent(IID, RegisterID, ReadCycles);
}
// Notify any writes that are in a false dependency with this write.
if (PartialWrite)
PartialWrite->writeStartEvent(IID, RegisterID, CyclesLeft);
}
void WriteState::addUser(unsigned IID, ReadState *User, int ReadAdvance) {
// If CyclesLeft is different than -1, then we don't need to
// update the list of users. We can just notify the user with
// the actual number of cycles left (which may be zero).
if (CyclesLeft != UNKNOWN_CYCLES) {
unsigned ReadCycles = std::max(0, CyclesLeft - ReadAdvance);
User->writeStartEvent(IID, RegisterID, ReadCycles);
return;
}
Users.emplace_back(User, ReadAdvance);
}
void WriteState::addUser(unsigned IID, WriteState *User) {
if (CyclesLeft != UNKNOWN_CYCLES) {
User->writeStartEvent(IID, RegisterID, std::max(0, CyclesLeft));
return;
}
assert(!PartialWrite && "PartialWrite already set!");
PartialWrite = User;
User->setDependentWrite(this);
}
void WriteState::cycleEvent() {
// Note: CyclesLeft can be a negative number. It is an error to
// make it an unsigned quantity because users of this write may
// specify a negative ReadAdvance.
if (CyclesLeft != UNKNOWN_CYCLES)
CyclesLeft--;
if (DependentWriteCyclesLeft)
DependentWriteCyclesLeft--;
}
void ReadState::cycleEvent() {
// Update the total number of cycles.
if (DependentWrites && TotalCycles) {
--TotalCycles;
return;
}
// Bail out immediately if we don't know how many cycles are left.
if (CyclesLeft == UNKNOWN_CYCLES)
return;
if (CyclesLeft) {
--CyclesLeft;
IsReady = !CyclesLeft;
}
}
#ifndef NDEBUG
void WriteState::dump() const {
dbgs() << "{ OpIdx=" << WD->OpIndex << ", Lat=" << getLatency() << ", RegID "
<< getRegisterID() << ", Cycles Left=" << getCyclesLeft() << " }";
}
void WriteRef::dump() const {
dbgs() << "IID=" << getSourceIndex() << ' ';
if (isValid())
getWriteState()->dump();
else
dbgs() << "(null)";
}
#endif
const CriticalDependency &Instruction::computeCriticalRegDep() {
if (CriticalRegDep.Cycles)
return CriticalRegDep;
unsigned MaxLatency = 0;
for (const WriteState &WS : getDefs()) {
const CriticalDependency &WriteCRD = WS.getCriticalRegDep();
if (WriteCRD.Cycles > MaxLatency)
CriticalRegDep = WriteCRD;
}
for (const ReadState &RS : getUses()) {
const CriticalDependency &ReadCRD = RS.getCriticalRegDep();
if (ReadCRD.Cycles > MaxLatency)
CriticalRegDep = ReadCRD;
}
return CriticalRegDep;
}
void Instruction::dispatch(unsigned RCUToken) {
assert(Stage == IS_INVALID);
Stage = IS_DISPATCHED;
RCUTokenID = RCUToken;
// Check if input operands are already available.
if (updateDispatched())
updatePending();
}
void Instruction::execute(unsigned IID) {
assert(Stage == IS_READY);
Stage = IS_EXECUTING;
// Set the cycles left before the write-back stage.
CyclesLeft = getLatency();
for (WriteState &WS : getDefs())
WS.onInstructionIssued(IID);
// Transition to the "executed" stage if this is a zero-latency instruction.
if (!CyclesLeft)
Stage = IS_EXECUTED;
}
void Instruction::forceExecuted() {
assert(Stage == IS_READY && "Invalid internal state!");
CyclesLeft = 0;
Stage = IS_EXECUTED;
}
bool Instruction::updatePending() {
assert(isPending() && "Unexpected instruction stage found!");
if (!all_of(getUses(), [](const ReadState &Use) { return Use.isReady(); }))
return false;
// A partial register write cannot complete before a dependent write.
if (!all_of(getDefs(), [](const WriteState &Def) { return Def.isReady(); }))
return false;
Stage = IS_READY;
return true;
}
bool Instruction::updateDispatched() {
assert(isDispatched() && "Unexpected instruction stage found!");
if (!all_of(getUses(), [](const ReadState &Use) {
return Use.isPending() || Use.isReady();
}))
return false;
// A partial register write cannot complete before a dependent write.
if (!all_of(getDefs(),
[](const WriteState &Def) { return !Def.getDependentWrite(); }))
return false;
Stage = IS_PENDING;
return true;
}
void Instruction::update() {
if (isDispatched())
updateDispatched();
if (isPending())
updatePending();
}
void Instruction::cycleEvent() {
if (isReady())
return;
if (isDispatched() || isPending()) {
for (ReadState &Use : getUses())
Use.cycleEvent();
for (WriteState &Def : getDefs())
Def.cycleEvent();
update();
return;
}
assert(isExecuting() && "Instruction not in-flight?");
assert(CyclesLeft && "Instruction already executed?");
for (WriteState &Def : getDefs())
Def.cycleEvent();
CyclesLeft--;
if (!CyclesLeft)
Stage = IS_EXECUTED;
}
const unsigned WriteRef::INVALID_IID = std::numeric_limits<unsigned>::max();
} // namespace mca
} // namespace llvm
|