1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
// there is at most one ret and one unreachable instruction, it ensures there is
// at most one divergent exiting block.
//
// StructurizeCFG can't deal with multi-exit regions formed by branches to
// multiple return nodes. It is not desirable to structurize regions with
// uniform branches, so unifying those to the same return block as divergent
// branches inhibits use of scalar branching. It still can't deal with the case
// where one branch goes to return, and one unreachable. Replace unreachable in
// this case with a return.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
namespace {
class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
}
// We can preserve non-critical-edgeness when we unify function exit nodes
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
};
} // end anonymous namespace
char AMDGPUUnifyDivergentExitNodes::ID = 0;
char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
"Unify divergent function exit nodes", false, false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
"Unify divergent function exit nodes", false, false)
void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
// TODO: Preserve dominator tree.
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.addRequired<LegacyDivergenceAnalysis>();
// No divergent values are changed, only blocks and branch edges.
AU.addPreserved<LegacyDivergenceAnalysis>();
// We preserve the non-critical-edgeness property
AU.addPreservedID(BreakCriticalEdgesID);
// This is a cluster of orthogonal Transforms
AU.addPreservedID(LowerSwitchID);
FunctionPass::getAnalysisUsage(AU);
AU.addRequired<TargetTransformInfoWrapperPass>();
}
/// \returns true if \p BB is reachable through only uniform branches.
/// XXX - Is there a more efficient way to find this?
static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA,
BasicBlock &BB) {
SmallVector<BasicBlock *, 8> Stack;
SmallPtrSet<BasicBlock *, 8> Visited;
for (BasicBlock *Pred : predecessors(&BB))
Stack.push_back(Pred);
while (!Stack.empty()) {
BasicBlock *Top = Stack.pop_back_val();
if (!DA.isUniform(Top->getTerminator()))
return false;
for (BasicBlock *Pred : predecessors(Top)) {
if (Visited.insert(Pred).second)
Stack.push_back(Pred);
}
}
return true;
}
static BasicBlock *unifyReturnBlockSet(Function &F,
ArrayRef<BasicBlock *> ReturningBlocks,
const TargetTransformInfo &TTI,
StringRef Name) {
// Otherwise, we need to insert a new basic block into the function, add a PHI
// nodes (if the function returns values), and convert all of the return
// instructions into unconditional branches.
BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
PHINode *PN = nullptr;
if (F.getReturnType()->isVoidTy()) {
ReturnInst::Create(F.getContext(), nullptr, NewRetBlock);
} else {
// If the function doesn't return void... add a PHI node to the block...
PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
"UnifiedRetVal");
NewRetBlock->getInstList().push_back(PN);
ReturnInst::Create(F.getContext(), PN, NewRetBlock);
}
// Loop over all of the blocks, replacing the return instruction with an
// unconditional branch.
for (BasicBlock *BB : ReturningBlocks) {
// Add an incoming element to the PHI node for every return instruction that
// is merging into this new block...
if (PN)
PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
// Remove and delete the return inst.
BB->getTerminator()->eraseFromParent();
BranchInst::Create(NewRetBlock, BB);
}
for (BasicBlock *BB : ReturningBlocks) {
// Cleanup possible branch to unconditional branch to the return.
simplifyCFG(BB, TTI, {2});
}
return NewRetBlock;
}
bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
if (PDT.getRoots().size() <= 1)
return false;
LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>();
// Loop over all of the blocks in a function, tracking all of the blocks that
// return.
SmallVector<BasicBlock *, 4> ReturningBlocks;
SmallVector<BasicBlock *, 4> UnreachableBlocks;
// Dummy return block for infinite loop.
BasicBlock *DummyReturnBB = nullptr;
for (BasicBlock *BB : PDT.getRoots()) {
if (isa<ReturnInst>(BB->getTerminator())) {
if (!isUniformlyReached(DA, *BB))
ReturningBlocks.push_back(BB);
} else if (isa<UnreachableInst>(BB->getTerminator())) {
if (!isUniformlyReached(DA, *BB))
UnreachableBlocks.push_back(BB);
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
if (DummyReturnBB == nullptr) {
DummyReturnBB = BasicBlock::Create(F.getContext(),
"DummyReturnBlock", &F);
Type *RetTy = F.getReturnType();
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
ReturningBlocks.push_back(DummyReturnBB);
}
if (BI->isUnconditional()) {
BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
BI->eraseFromParent(); // Delete the unconditional branch.
// Add a new conditional branch with a dummy edge to the return block.
BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
} else { // Conditional branch.
// Create a new transition block to hold the conditional branch.
BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
// Create a branch that will always branch to the transition block and
// references DummyReturnBB.
BB->getTerminator()->eraseFromParent();
BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
}
}
}
if (!UnreachableBlocks.empty()) {
BasicBlock *UnreachableBlock = nullptr;
if (UnreachableBlocks.size() == 1) {
UnreachableBlock = UnreachableBlocks.front();
} else {
UnreachableBlock = BasicBlock::Create(F.getContext(),
"UnifiedUnreachableBlock", &F);
new UnreachableInst(F.getContext(), UnreachableBlock);
for (BasicBlock *BB : UnreachableBlocks) {
// Remove and delete the unreachable inst.
BB->getTerminator()->eraseFromParent();
BranchInst::Create(UnreachableBlock, BB);
}
}
if (!ReturningBlocks.empty()) {
// Don't create a new unreachable inst if we have a return. The
// structurizer/annotator can't handle the multiple exits
Type *RetTy = F.getReturnType();
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
// Remove and delete the unreachable inst.
UnreachableBlock->getTerminator()->eraseFromParent();
Function *UnreachableIntrin =
Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
// Insert a call to an intrinsic tracking that this is an unreachable
// point, in case we want to kill the active lanes or something later.
CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
// Don't create a scalar trap. We would only want to trap if this code was
// really reached, but a scalar trap would happen even if no lanes
// actually reached here.
ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
ReturningBlocks.push_back(UnreachableBlock);
}
}
// Now handle return blocks.
if (ReturningBlocks.empty())
return false; // No blocks return
if (ReturningBlocks.size() == 1)
return false; // Already has a single return block
const TargetTransformInfo &TTI
= getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
unifyReturnBlockSet(F, ReturningBlocks, TTI, "UnifiedReturnBlock");
return true;
}
|