1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
//===-- RISCVInstrFormats.td - RISCV Instruction Formats ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//
// These instruction format definitions are structured to match the
// description in the RISC-V User-Level ISA specification as closely as
// possible. For instance, the specification describes instructions with the
// MSB (31st bit) on the left and the LSB (0th bit) on the right. This is
// reflected in the order of parameters to each instruction class.
//
// One area of divergence is in the description of immediates. The
// specification describes immediate encoding in terms of bit-slicing
// operations on the logical value represented. The immediate argument to
// these instruction formats instead represents the bit sequence that will be
// inserted into the instruction. e.g. although JAL's immediate is logically
// a 21-bit value (where the LSB is always zero), we describe it as an imm20
// to match how it is encoded.
//
//===----------------------------------------------------------------------===//
// Format specifies the encoding used by the instruction. This is used by
// RISCVMCCodeEmitter to determine which form of fixup to use. These
// definitions must be kept in-sync with RISCVBaseInfo.h.
class InstFormat<bits<5> val> {
bits<5> Value = val;
}
def InstFormatPseudo : InstFormat<0>;
def InstFormatR : InstFormat<1>;
def InstFormatR4 : InstFormat<2>;
def InstFormatI : InstFormat<3>;
def InstFormatS : InstFormat<4>;
def InstFormatB : InstFormat<5>;
def InstFormatU : InstFormat<6>;
def InstFormatJ : InstFormat<7>;
def InstFormatCR : InstFormat<8>;
def InstFormatCI : InstFormat<9>;
def InstFormatCSS : InstFormat<10>;
def InstFormatCIW : InstFormat<11>;
def InstFormatCL : InstFormat<12>;
def InstFormatCS : InstFormat<13>;
def InstFormatCA : InstFormat<14>;
def InstFormatCB : InstFormat<15>;
def InstFormatCJ : InstFormat<16>;
def InstFormatOther : InstFormat<17>;
// The following opcode names match those given in Table 19.1 in the
// RISC-V User-level ISA specification ("RISC-V base opcode map").
class RISCVOpcode<bits<7> val> {
bits<7> Value = val;
}
def OPC_LOAD : RISCVOpcode<0b0000011>;
def OPC_LOAD_FP : RISCVOpcode<0b0000111>;
def OPC_MISC_MEM : RISCVOpcode<0b0001111>;
def OPC_OP_IMM : RISCVOpcode<0b0010011>;
def OPC_AUIPC : RISCVOpcode<0b0010111>;
def OPC_OP_IMM_32 : RISCVOpcode<0b0011011>;
def OPC_STORE : RISCVOpcode<0b0100011>;
def OPC_STORE_FP : RISCVOpcode<0b0100111>;
def OPC_AMO : RISCVOpcode<0b0101111>;
def OPC_OP : RISCVOpcode<0b0110011>;
def OPC_LUI : RISCVOpcode<0b0110111>;
def OPC_OP_32 : RISCVOpcode<0b0111011>;
def OPC_MADD : RISCVOpcode<0b1000011>;
def OPC_MSUB : RISCVOpcode<0b1000111>;
def OPC_NMSUB : RISCVOpcode<0b1001011>;
def OPC_NMADD : RISCVOpcode<0b1001111>;
def OPC_OP_FP : RISCVOpcode<0b1010011>;
def OPC_BRANCH : RISCVOpcode<0b1100011>;
def OPC_JALR : RISCVOpcode<0b1100111>;
def OPC_JAL : RISCVOpcode<0b1101111>;
def OPC_SYSTEM : RISCVOpcode<0b1110011>;
class RVInst<dag outs, dag ins, string opcodestr, string argstr,
list<dag> pattern, InstFormat format>
: Instruction {
field bits<32> Inst;
// SoftFail is a field the disassembler can use to provide a way for
// instructions to not match without killing the whole decode process. It is
// mainly used for ARM, but Tablegen expects this field to exist or it fails
// to build the decode table.
field bits<32> SoftFail = 0;
let Size = 4;
bits<7> Opcode = 0;
let Inst{6-0} = Opcode;
let Namespace = "RISCV";
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = opcodestr # "\t" # argstr;
let Pattern = pattern;
let TSFlags{4-0} = format.Value;
}
// Pseudo instructions
class Pseudo<dag outs, dag ins, list<dag> pattern, string opcodestr = "", string argstr = "">
: RVInst<outs, ins, opcodestr, argstr, pattern, InstFormatPseudo> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// Pseudo load instructions.
class PseudoLoad<string opcodestr, RegisterClass rdty = GPR>
: Pseudo<(outs rdty:$rd), (ins bare_symbol:$addr), [], opcodestr, "$rd, $addr"> {
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 0;
let isCodeGenOnly = 0;
let isAsmParserOnly = 1;
}
class PseudoFloatLoad<string opcodestr, RegisterClass rdty = GPR>
: Pseudo<(outs rdty:$rd, GPR:$tmp), (ins bare_symbol:$addr), [], opcodestr, "$rd, $addr, $tmp"> {
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 0;
let isCodeGenOnly = 0;
let isAsmParserOnly = 1;
}
// Pseudo store instructions.
class PseudoStore<string opcodestr, RegisterClass rsty = GPR>
: Pseudo<(outs rsty:$rs, GPR:$tmp), (ins bare_symbol:$addr), [], opcodestr, "$rs, $addr, $tmp"> {
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 1;
let isCodeGenOnly = 0;
let isAsmParserOnly = 1;
}
// Instruction formats are listed in the order they appear in the RISC-V
// instruction set manual (R, I, S, B, U, J) with sub-formats (e.g. RVInstR4,
// RVInstRAtomic) sorted alphabetically.
class RVInstR<bits<7> funct7, bits<3> funct3, RISCVOpcode opcode, dag outs,
dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR> {
bits<5> rs2;
bits<5> rs1;
bits<5> rd;
let Inst{31-25} = funct7;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstR4<bits<2> funct2, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR4> {
bits<5> rs3;
bits<5> rs2;
bits<5> rs1;
bits<3> funct3;
bits<5> rd;
let Inst{31-27} = rs3;
let Inst{26-25} = funct2;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstRAtomic<bits<5> funct5, bit aq, bit rl, bits<3> funct3,
RISCVOpcode opcode, dag outs, dag ins, string opcodestr,
string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR> {
bits<5> rs2;
bits<5> rs1;
bits<5> rd;
let Inst{31-27} = funct5;
let Inst{26} = aq;
let Inst{25} = rl;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstRFrm<bits<7> funct7, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatR> {
bits<5> rs2;
bits<5> rs1;
bits<3> funct3;
bits<5> rd;
let Inst{31-25} = funct7;
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstI<bits<3> funct3, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatI> {
bits<12> imm12;
bits<5> rs1;
bits<5> rd;
let Inst{31-20} = imm12;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstIShift<bit arithshift, bits<3> funct3, RISCVOpcode opcode,
dag outs, dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatI> {
bits<6> shamt;
bits<5> rs1;
bits<5> rd;
let Inst{31} = 0;
let Inst{30} = arithshift;
let Inst{29-26} = 0;
let Inst{25-20} = shamt;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstIShiftW<bit arithshift, bits<3> funct3, RISCVOpcode opcode,
dag outs, dag ins, string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatI> {
bits<5> shamt;
bits<5> rs1;
bits<5> rd;
let Inst{31} = 0;
let Inst{30} = arithshift;
let Inst{29-25} = 0;
let Inst{24-20} = shamt;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstS<bits<3> funct3, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatS> {
bits<12> imm12;
bits<5> rs2;
bits<5> rs1;
let Inst{31-25} = imm12{11-5};
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-7} = imm12{4-0};
let Opcode = opcode.Value;
}
class RVInstB<bits<3> funct3, RISCVOpcode opcode, dag outs, dag ins,
string opcodestr, string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatB> {
bits<12> imm12;
bits<5> rs2;
bits<5> rs1;
let Inst{31} = imm12{11};
let Inst{30-25} = imm12{9-4};
let Inst{24-20} = rs2;
let Inst{19-15} = rs1;
let Inst{14-12} = funct3;
let Inst{11-8} = imm12{3-0};
let Inst{7} = imm12{10};
let Opcode = opcode.Value;
}
class RVInstU<RISCVOpcode opcode, dag outs, dag ins, string opcodestr,
string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatU> {
bits<20> imm20;
bits<5> rd;
let Inst{31-12} = imm20;
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
class RVInstJ<RISCVOpcode opcode, dag outs, dag ins, string opcodestr,
string argstr>
: RVInst<outs, ins, opcodestr, argstr, [], InstFormatJ> {
bits<20> imm20;
bits<5> rd;
let Inst{31} = imm20{19};
let Inst{30-21} = imm20{9-0};
let Inst{20} = imm20{10};
let Inst{19-12} = imm20{18-11};
let Inst{11-7} = rd;
let Opcode = opcode.Value;
}
|