1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
|
//===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This pass builds the coroutine frame and outlines resume and destroy parts
// of the coroutine into separate functions.
//
// We present a coroutine to an LLVM as an ordinary function with suspension
// points marked up with intrinsics. We let the optimizer party on the coroutine
// as a single function for as long as possible. Shortly before the coroutine is
// eligible to be inlined into its callers, we split up the coroutine into parts
// corresponding to an initial, resume and destroy invocations of the coroutine,
// add them to the current SCC and restart the IPO pipeline to optimize the
// coroutine subfunctions we extracted before proceeding to the caller of the
// coroutine.
//===----------------------------------------------------------------------===//
#include "CoroInstr.h"
#include "CoroInternal.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "coro-split"
// Create an entry block for a resume function with a switch that will jump to
// suspend points.
static BasicBlock *createResumeEntryBlock(Function &F, coro::Shape &Shape) {
LLVMContext &C = F.getContext();
// resume.entry:
// %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
// i32 2
// % index = load i32, i32* %index.addr
// switch i32 %index, label %unreachable [
// i32 0, label %resume.0
// i32 1, label %resume.1
// ...
// ]
auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
IRBuilder<> Builder(NewEntry);
auto *FramePtr = Shape.FramePtr;
auto *FrameTy = Shape.FrameTy;
auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(
FrameTy, FramePtr, 0, coro::Shape::IndexField, "index.addr");
auto *Index = Builder.CreateLoad(Shape.getIndexType(), GepIndex, "index");
auto *Switch =
Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
Shape.ResumeSwitch = Switch;
size_t SuspendIndex = 0;
for (CoroSuspendInst *S : Shape.CoroSuspends) {
ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
// Replace CoroSave with a store to Index:
// %index.addr = getelementptr %f.frame... (index field number)
// store i32 0, i32* %index.addr1
auto *Save = S->getCoroSave();
Builder.SetInsertPoint(Save);
if (S->isFinal()) {
// Final suspend point is represented by storing zero in ResumeFnAddr.
auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0,
0, "ResumeFn.addr");
auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
cast<PointerType>(GepIndex->getType())->getElementType()));
Builder.CreateStore(NullPtr, GepIndex);
} else {
auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(
FrameTy, FramePtr, 0, coro::Shape::IndexField, "index.addr");
Builder.CreateStore(IndexVal, GepIndex);
}
Save->replaceAllUsesWith(ConstantTokenNone::get(C));
Save->eraseFromParent();
// Split block before and after coro.suspend and add a jump from an entry
// switch:
//
// whateverBB:
// whatever
// %0 = call i8 @llvm.coro.suspend(token none, i1 false)
// switch i8 %0, label %suspend[i8 0, label %resume
// i8 1, label %cleanup]
// becomes:
//
// whateverBB:
// whatever
// br label %resume.0.landing
//
// resume.0: ; <--- jump from the switch in the resume.entry
// %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
// br label %resume.0.landing
//
// resume.0.landing:
// %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
// switch i8 % 1, label %suspend [i8 0, label %resume
// i8 1, label %cleanup]
auto *SuspendBB = S->getParent();
auto *ResumeBB =
SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
auto *LandingBB = ResumeBB->splitBasicBlock(
S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
Switch->addCase(IndexVal, ResumeBB);
cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
S->replaceAllUsesWith(PN);
PN->addIncoming(Builder.getInt8(-1), SuspendBB);
PN->addIncoming(S, ResumeBB);
++SuspendIndex;
}
Builder.SetInsertPoint(UnreachBB);
Builder.CreateUnreachable();
return NewEntry;
}
// In Resumers, we replace fallthrough coro.end with ret void and delete the
// rest of the block.
static void replaceFallthroughCoroEnd(IntrinsicInst *End,
ValueToValueMapTy &VMap) {
auto *NewE = cast<IntrinsicInst>(VMap[End]);
ReturnInst::Create(NewE->getContext(), nullptr, NewE);
// Remove the rest of the block, by splitting it into an unreachable block.
auto *BB = NewE->getParent();
BB->splitBasicBlock(NewE);
BB->getTerminator()->eraseFromParent();
}
// In Resumers, we replace unwind coro.end with True to force the immediate
// unwind to caller.
static void replaceUnwindCoroEnds(coro::Shape &Shape, ValueToValueMapTy &VMap) {
if (Shape.CoroEnds.empty())
return;
LLVMContext &Context = Shape.CoroEnds.front()->getContext();
auto *True = ConstantInt::getTrue(Context);
for (CoroEndInst *CE : Shape.CoroEnds) {
if (!CE->isUnwind())
continue;
auto *NewCE = cast<IntrinsicInst>(VMap[CE]);
// If coro.end has an associated bundle, add cleanupret instruction.
if (auto Bundle = NewCE->getOperandBundle(LLVMContext::OB_funclet)) {
Value *FromPad = Bundle->Inputs[0];
auto *CleanupRet = CleanupReturnInst::Create(FromPad, nullptr, NewCE);
NewCE->getParent()->splitBasicBlock(NewCE);
CleanupRet->getParent()->getTerminator()->eraseFromParent();
}
NewCE->replaceAllUsesWith(True);
NewCE->eraseFromParent();
}
}
// Rewrite final suspend point handling. We do not use suspend index to
// represent the final suspend point. Instead we zero-out ResumeFnAddr in the
// coroutine frame, since it is undefined behavior to resume a coroutine
// suspended at the final suspend point. Thus, in the resume function, we can
// simply remove the last case (when coro::Shape is built, the final suspend
// point (if present) is always the last element of CoroSuspends array).
// In the destroy function, we add a code sequence to check if ResumeFnAddress
// is Null, and if so, jump to the appropriate label to handle cleanup from the
// final suspend point.
static void handleFinalSuspend(IRBuilder<> &Builder, Value *FramePtr,
coro::Shape &Shape, SwitchInst *Switch,
bool IsDestroy) {
assert(Shape.HasFinalSuspend);
auto FinalCaseIt = std::prev(Switch->case_end());
BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
Switch->removeCase(FinalCaseIt);
if (IsDestroy) {
BasicBlock *OldSwitchBB = Switch->getParent();
auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
Builder.SetInsertPoint(OldSwitchBB->getTerminator());
auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(Shape.FrameTy, FramePtr,
0, 0, "ResumeFn.addr");
auto *Load = Builder.CreateLoad(
Shape.FrameTy->getElementType(coro::Shape::ResumeField), GepIndex);
auto *NullPtr =
ConstantPointerNull::get(cast<PointerType>(Load->getType()));
auto *Cond = Builder.CreateICmpEQ(Load, NullPtr);
Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
OldSwitchBB->getTerminator()->eraseFromParent();
}
}
// Create a resume clone by cloning the body of the original function, setting
// new entry block and replacing coro.suspend an appropriate value to force
// resume or cleanup pass for every suspend point.
static Function *createClone(Function &F, Twine Suffix, coro::Shape &Shape,
BasicBlock *ResumeEntry, int8_t FnIndex) {
Module *M = F.getParent();
auto *FrameTy = Shape.FrameTy;
auto *FnPtrTy = cast<PointerType>(FrameTy->getElementType(0));
auto *FnTy = cast<FunctionType>(FnPtrTy->getElementType());
Function *NewF =
Function::Create(FnTy, GlobalValue::LinkageTypes::ExternalLinkage,
F.getName() + Suffix, M);
NewF->addParamAttr(0, Attribute::NonNull);
NewF->addParamAttr(0, Attribute::NoAlias);
ValueToValueMapTy VMap;
// Replace all args with undefs. The buildCoroutineFrame algorithm already
// rewritten access to the args that occurs after suspend points with loads
// and stores to/from the coroutine frame.
for (Argument &A : F.args())
VMap[&A] = UndefValue::get(A.getType());
SmallVector<ReturnInst *, 4> Returns;
CloneFunctionInto(NewF, &F, VMap, /*ModuleLevelChanges=*/true, Returns);
NewF->setLinkage(GlobalValue::LinkageTypes::InternalLinkage);
// Remove old returns.
for (ReturnInst *Return : Returns)
changeToUnreachable(Return, /*UseLLVMTrap=*/false);
// Remove old return attributes.
NewF->removeAttributes(
AttributeList::ReturnIndex,
AttributeFuncs::typeIncompatible(NewF->getReturnType()));
// Make AllocaSpillBlock the new entry block.
auto *SwitchBB = cast<BasicBlock>(VMap[ResumeEntry]);
auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
Entry->moveBefore(&NewF->getEntryBlock());
Entry->getTerminator()->eraseFromParent();
BranchInst::Create(SwitchBB, Entry);
Entry->setName("entry" + Suffix);
// Clear all predecessors of the new entry block.
auto *Switch = cast<SwitchInst>(VMap[Shape.ResumeSwitch]);
Entry->replaceAllUsesWith(Switch->getDefaultDest());
IRBuilder<> Builder(&NewF->getEntryBlock().front());
// Remap frame pointer.
Argument *NewFramePtr = &*NewF->arg_begin();
Value *OldFramePtr = cast<Value>(VMap[Shape.FramePtr]);
NewFramePtr->takeName(OldFramePtr);
OldFramePtr->replaceAllUsesWith(NewFramePtr);
// Remap vFrame pointer.
auto *NewVFrame = Builder.CreateBitCast(
NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
OldVFrame->replaceAllUsesWith(NewVFrame);
// Rewrite final suspend handling as it is not done via switch (allows to
// remove final case from the switch, since it is undefined behavior to resume
// the coroutine suspended at the final suspend point.
if (Shape.HasFinalSuspend) {
auto *Switch = cast<SwitchInst>(VMap[Shape.ResumeSwitch]);
bool IsDestroy = FnIndex != 0;
handleFinalSuspend(Builder, NewFramePtr, Shape, Switch, IsDestroy);
}
// Replace coro suspend with the appropriate resume index.
// Replacing coro.suspend with (0) will result in control flow proceeding to
// a resume label associated with a suspend point, replacing it with (1) will
// result in control flow proceeding to a cleanup label associated with this
// suspend point.
auto *NewValue = Builder.getInt8(FnIndex ? 1 : 0);
for (CoroSuspendInst *CS : Shape.CoroSuspends) {
auto *MappedCS = cast<CoroSuspendInst>(VMap[CS]);
MappedCS->replaceAllUsesWith(NewValue);
MappedCS->eraseFromParent();
}
// Remove coro.end intrinsics.
replaceFallthroughCoroEnd(Shape.CoroEnds.front(), VMap);
replaceUnwindCoroEnds(Shape, VMap);
// Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
// to suppress deallocation code.
coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
/*Elide=*/FnIndex == 2);
NewF->setCallingConv(CallingConv::Fast);
return NewF;
}
static void removeCoroEnds(coro::Shape &Shape) {
if (Shape.CoroEnds.empty())
return;
LLVMContext &Context = Shape.CoroEnds.front()->getContext();
auto *False = ConstantInt::getFalse(Context);
for (CoroEndInst *CE : Shape.CoroEnds) {
CE->replaceAllUsesWith(False);
CE->eraseFromParent();
}
}
static void replaceFrameSize(coro::Shape &Shape) {
if (Shape.CoroSizes.empty())
return;
// In the same function all coro.sizes should have the same result type.
auto *SizeIntrin = Shape.CoroSizes.back();
Module *M = SizeIntrin->getModule();
const DataLayout &DL = M->getDataLayout();
auto Size = DL.getTypeAllocSize(Shape.FrameTy);
auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
for (CoroSizeInst *CS : Shape.CoroSizes) {
CS->replaceAllUsesWith(SizeConstant);
CS->eraseFromParent();
}
}
// Create a global constant array containing pointers to functions provided and
// set Info parameter of CoroBegin to point at this constant. Example:
//
// @f.resumers = internal constant [2 x void(%f.frame*)*]
// [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
// define void @f() {
// ...
// call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
// i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
//
// Assumes that all the functions have the same signature.
static void setCoroInfo(Function &F, CoroBeginInst *CoroBegin,
std::initializer_list<Function *> Fns) {
SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
assert(!Args.empty());
Function *Part = *Fns.begin();
Module *M = Part->getParent();
auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
auto *ConstVal = ConstantArray::get(ArrTy, Args);
auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
GlobalVariable::PrivateLinkage, ConstVal,
F.getName() + Twine(".resumers"));
// Update coro.begin instruction to refer to this constant.
LLVMContext &C = F.getContext();
auto *BC = ConstantExpr::getPointerCast(GV, Type::getInt8PtrTy(C));
CoroBegin->getId()->setInfo(BC);
}
// Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
Function *DestroyFn, Function *CleanupFn) {
IRBuilder<> Builder(Shape.FramePtr->getNextNode());
auto *ResumeAddr = Builder.CreateConstInBoundsGEP2_32(
Shape.FrameTy, Shape.FramePtr, 0, coro::Shape::ResumeField,
"resume.addr");
Builder.CreateStore(ResumeFn, ResumeAddr);
Value *DestroyOrCleanupFn = DestroyFn;
CoroIdInst *CoroId = Shape.CoroBegin->getId();
if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
// If there is a CoroAlloc and it returns false (meaning we elide the
// allocation, use CleanupFn instead of DestroyFn).
DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
}
auto *DestroyAddr = Builder.CreateConstInBoundsGEP2_32(
Shape.FrameTy, Shape.FramePtr, 0, coro::Shape::DestroyField,
"destroy.addr");
Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
}
static void postSplitCleanup(Function &F) {
removeUnreachableBlocks(F);
legacy::FunctionPassManager FPM(F.getParent());
FPM.add(createVerifierPass());
FPM.add(createSCCPPass());
FPM.add(createCFGSimplificationPass());
FPM.add(createEarlyCSEPass());
FPM.add(createCFGSimplificationPass());
FPM.doInitialization();
FPM.run(F);
FPM.doFinalization();
}
// Assuming we arrived at the block NewBlock from Prev instruction, store
// PHI's incoming values in the ResolvedValues map.
static void
scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock,
DenseMap<Value *, Value *> &ResolvedValues) {
auto *PrevBB = Prev->getParent();
for (PHINode &PN : NewBlock->phis()) {
auto V = PN.getIncomingValueForBlock(PrevBB);
// See if we already resolved it.
auto VI = ResolvedValues.find(V);
if (VI != ResolvedValues.end())
V = VI->second;
// Remember the value.
ResolvedValues[&PN] = V;
}
}
// Replace a sequence of branches leading to a ret, with a clone of a ret
// instruction. Suspend instruction represented by a switch, track the PHI
// values and select the correct case successor when possible.
static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
DenseMap<Value *, Value *> ResolvedValues;
Instruction *I = InitialInst;
while (I->isTerminator()) {
if (isa<ReturnInst>(I)) {
if (I != InitialInst)
ReplaceInstWithInst(InitialInst, I->clone());
return true;
}
if (auto *BR = dyn_cast<BranchInst>(I)) {
if (BR->isUnconditional()) {
BasicBlock *BB = BR->getSuccessor(0);
scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
I = BB->getFirstNonPHIOrDbgOrLifetime();
continue;
}
} else if (auto *SI = dyn_cast<SwitchInst>(I)) {
Value *V = SI->getCondition();
auto it = ResolvedValues.find(V);
if (it != ResolvedValues.end())
V = it->second;
if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
I = BB->getFirstNonPHIOrDbgOrLifetime();
continue;
}
}
return false;
}
return false;
}
// Add musttail to any resume instructions that is immediately followed by a
// suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
// for symmetrical coroutine control transfer (C++ Coroutines TS extension).
// This transformation is done only in the resume part of the coroutine that has
// identical signature and calling convention as the coro.resume call.
static void addMustTailToCoroResumes(Function &F) {
bool changed = false;
// Collect potential resume instructions.
SmallVector<CallInst *, 4> Resumes;
for (auto &I : instructions(F))
if (auto *Call = dyn_cast<CallInst>(&I))
if (auto *CalledValue = Call->getCalledValue())
// CoroEarly pass replaced coro resumes with indirect calls to an
// address return by CoroSubFnInst intrinsic. See if it is one of those.
if (isa<CoroSubFnInst>(CalledValue->stripPointerCasts()))
Resumes.push_back(Call);
// Set musttail on those that are followed by a ret instruction.
for (CallInst *Call : Resumes)
if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
Call->setTailCallKind(CallInst::TCK_MustTail);
changed = true;
}
if (changed)
removeUnreachableBlocks(F);
}
// Coroutine has no suspend points. Remove heap allocation for the coroutine
// frame if possible.
static void handleNoSuspendCoroutine(CoroBeginInst *CoroBegin, Type *FrameTy) {
auto *CoroId = CoroBegin->getId();
auto *AllocInst = CoroId->getCoroAlloc();
coro::replaceCoroFree(CoroId, /*Elide=*/AllocInst != nullptr);
if (AllocInst) {
IRBuilder<> Builder(AllocInst);
// FIXME: Need to handle overaligned members.
auto *Frame = Builder.CreateAlloca(FrameTy);
auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
AllocInst->replaceAllUsesWith(Builder.getFalse());
AllocInst->eraseFromParent();
CoroBegin->replaceAllUsesWith(VFrame);
} else {
CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
}
CoroBegin->eraseFromParent();
}
// SimplifySuspendPoint needs to check that there is no calls between
// coro_save and coro_suspend, since any of the calls may potentially resume
// the coroutine and if that is the case we cannot eliminate the suspend point.
static bool hasCallsInBlockBetween(Instruction *From, Instruction *To) {
for (Instruction *I = From; I != To; I = I->getNextNode()) {
// Assume that no intrinsic can resume the coroutine.
if (isa<IntrinsicInst>(I))
continue;
if (CallSite(I))
return true;
}
return false;
}
static bool hasCallsInBlocksBetween(BasicBlock *SaveBB, BasicBlock *ResDesBB) {
SmallPtrSet<BasicBlock *, 8> Set;
SmallVector<BasicBlock *, 8> Worklist;
Set.insert(SaveBB);
Worklist.push_back(ResDesBB);
// Accumulate all blocks between SaveBB and ResDesBB. Because CoroSaveIntr
// returns a token consumed by suspend instruction, all blocks in between
// will have to eventually hit SaveBB when going backwards from ResDesBB.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
Set.insert(BB);
for (auto *Pred : predecessors(BB))
if (Set.count(Pred) == 0)
Worklist.push_back(Pred);
}
// SaveBB and ResDesBB are checked separately in hasCallsBetween.
Set.erase(SaveBB);
Set.erase(ResDesBB);
for (auto *BB : Set)
if (hasCallsInBlockBetween(BB->getFirstNonPHI(), nullptr))
return true;
return false;
}
static bool hasCallsBetween(Instruction *Save, Instruction *ResumeOrDestroy) {
auto *SaveBB = Save->getParent();
auto *ResumeOrDestroyBB = ResumeOrDestroy->getParent();
if (SaveBB == ResumeOrDestroyBB)
return hasCallsInBlockBetween(Save->getNextNode(), ResumeOrDestroy);
// Any calls from Save to the end of the block?
if (hasCallsInBlockBetween(Save->getNextNode(), nullptr))
return true;
// Any calls from begging of the block up to ResumeOrDestroy?
if (hasCallsInBlockBetween(ResumeOrDestroyBB->getFirstNonPHI(),
ResumeOrDestroy))
return true;
// Any calls in all of the blocks between SaveBB and ResumeOrDestroyBB?
if (hasCallsInBlocksBetween(SaveBB, ResumeOrDestroyBB))
return true;
return false;
}
// If a SuspendIntrin is preceded by Resume or Destroy, we can eliminate the
// suspend point and replace it with nornal control flow.
static bool simplifySuspendPoint(CoroSuspendInst *Suspend,
CoroBeginInst *CoroBegin) {
Instruction *Prev = Suspend->getPrevNode();
if (!Prev) {
auto *Pred = Suspend->getParent()->getSinglePredecessor();
if (!Pred)
return false;
Prev = Pred->getTerminator();
}
CallSite CS{Prev};
if (!CS)
return false;
auto *CallInstr = CS.getInstruction();
auto *Callee = CS.getCalledValue()->stripPointerCasts();
// See if the callsite is for resumption or destruction of the coroutine.
auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
if (!SubFn)
return false;
// Does not refer to the current coroutine, we cannot do anything with it.
if (SubFn->getFrame() != CoroBegin)
return false;
// See if the transformation is safe. Specifically, see if there are any
// calls in between Save and CallInstr. They can potenitally resume the
// coroutine rendering this optimization unsafe.
auto *Save = Suspend->getCoroSave();
if (hasCallsBetween(Save, CallInstr))
return false;
// Replace llvm.coro.suspend with the value that results in resumption over
// the resume or cleanup path.
Suspend->replaceAllUsesWith(SubFn->getRawIndex());
Suspend->eraseFromParent();
Save->eraseFromParent();
// No longer need a call to coro.resume or coro.destroy.
if (auto *Invoke = dyn_cast<InvokeInst>(CallInstr)) {
BranchInst::Create(Invoke->getNormalDest(), Invoke);
}
// Grab the CalledValue from CS before erasing the CallInstr.
auto *CalledValue = CS.getCalledValue();
CallInstr->eraseFromParent();
// If no more users remove it. Usually it is a bitcast of SubFn.
if (CalledValue != SubFn && CalledValue->user_empty())
if (auto *I = dyn_cast<Instruction>(CalledValue))
I->eraseFromParent();
// Now we are good to remove SubFn.
if (SubFn->user_empty())
SubFn->eraseFromParent();
return true;
}
// Remove suspend points that are simplified.
static void simplifySuspendPoints(coro::Shape &Shape) {
auto &S = Shape.CoroSuspends;
size_t I = 0, N = S.size();
if (N == 0)
return;
while (true) {
if (simplifySuspendPoint(S[I], Shape.CoroBegin)) {
if (--N == I)
break;
std::swap(S[I], S[N]);
continue;
}
if (++I == N)
break;
}
S.resize(N);
}
static SmallPtrSet<BasicBlock *, 4> getCoroBeginPredBlocks(CoroBeginInst *CB) {
// Collect all blocks that we need to look for instructions to relocate.
SmallPtrSet<BasicBlock *, 4> RelocBlocks;
SmallVector<BasicBlock *, 4> Work;
Work.push_back(CB->getParent());
do {
BasicBlock *Current = Work.pop_back_val();
for (BasicBlock *BB : predecessors(Current))
if (RelocBlocks.count(BB) == 0) {
RelocBlocks.insert(BB);
Work.push_back(BB);
}
} while (!Work.empty());
return RelocBlocks;
}
static SmallPtrSet<Instruction *, 8>
getNotRelocatableInstructions(CoroBeginInst *CoroBegin,
SmallPtrSetImpl<BasicBlock *> &RelocBlocks) {
SmallPtrSet<Instruction *, 8> DoNotRelocate;
// Collect all instructions that we should not relocate
SmallVector<Instruction *, 8> Work;
// Start with CoroBegin and terminators of all preceding blocks.
Work.push_back(CoroBegin);
BasicBlock *CoroBeginBB = CoroBegin->getParent();
for (BasicBlock *BB : RelocBlocks)
if (BB != CoroBeginBB)
Work.push_back(BB->getTerminator());
// For every instruction in the Work list, place its operands in DoNotRelocate
// set.
do {
Instruction *Current = Work.pop_back_val();
LLVM_DEBUG(dbgs() << "CoroSplit: Will not relocate: " << *Current << "\n");
DoNotRelocate.insert(Current);
for (Value *U : Current->operands()) {
auto *I = dyn_cast<Instruction>(U);
if (!I)
continue;
if (auto *A = dyn_cast<AllocaInst>(I)) {
// Stores to alloca instructions that occur before the coroutine frame
// is allocated should not be moved; the stored values may be used by
// the coroutine frame allocator. The operands to those stores must also
// remain in place.
for (const auto &User : A->users())
if (auto *SI = dyn_cast<llvm::StoreInst>(User))
if (RelocBlocks.count(SI->getParent()) != 0 &&
DoNotRelocate.count(SI) == 0) {
Work.push_back(SI);
DoNotRelocate.insert(SI);
}
continue;
}
if (DoNotRelocate.count(I) == 0) {
Work.push_back(I);
DoNotRelocate.insert(I);
}
}
} while (!Work.empty());
return DoNotRelocate;
}
static void relocateInstructionBefore(CoroBeginInst *CoroBegin, Function &F) {
// Analyze which non-alloca instructions are needed for allocation and
// relocate the rest to after coro.begin. We need to do it, since some of the
// targets of those instructions may be placed into coroutine frame memory
// for which becomes available after coro.begin intrinsic.
auto BlockSet = getCoroBeginPredBlocks(CoroBegin);
auto DoNotRelocateSet = getNotRelocatableInstructions(CoroBegin, BlockSet);
Instruction *InsertPt = CoroBegin->getNextNode();
BasicBlock &BB = F.getEntryBlock(); // TODO: Look at other blocks as well.
for (auto B = BB.begin(), E = BB.end(); B != E;) {
Instruction &I = *B++;
if (isa<AllocaInst>(&I))
continue;
if (&I == CoroBegin)
break;
if (DoNotRelocateSet.count(&I))
continue;
I.moveBefore(InsertPt);
}
}
static void splitCoroutine(Function &F, CallGraph &CG, CallGraphSCC &SCC) {
EliminateUnreachableBlocks(F);
coro::Shape Shape(F);
if (!Shape.CoroBegin)
return;
simplifySuspendPoints(Shape);
relocateInstructionBefore(Shape.CoroBegin, F);
buildCoroutineFrame(F, Shape);
replaceFrameSize(Shape);
// If there are no suspend points, no split required, just remove
// the allocation and deallocation blocks, they are not needed.
if (Shape.CoroSuspends.empty()) {
handleNoSuspendCoroutine(Shape.CoroBegin, Shape.FrameTy);
removeCoroEnds(Shape);
postSplitCleanup(F);
coro::updateCallGraph(F, {}, CG, SCC);
return;
}
auto *ResumeEntry = createResumeEntryBlock(F, Shape);
auto ResumeClone = createClone(F, ".resume", Shape, ResumeEntry, 0);
auto DestroyClone = createClone(F, ".destroy", Shape, ResumeEntry, 1);
auto CleanupClone = createClone(F, ".cleanup", Shape, ResumeEntry, 2);
// We no longer need coro.end in F.
removeCoroEnds(Shape);
postSplitCleanup(F);
postSplitCleanup(*ResumeClone);
postSplitCleanup(*DestroyClone);
postSplitCleanup(*CleanupClone);
addMustTailToCoroResumes(*ResumeClone);
// Store addresses resume/destroy/cleanup functions in the coroutine frame.
updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
// Create a constant array referring to resume/destroy/clone functions pointed
// by the last argument of @llvm.coro.info, so that CoroElide pass can
// determined correct function to call.
setCoroInfo(F, Shape.CoroBegin, {ResumeClone, DestroyClone, CleanupClone});
// Update call graph and add the functions we created to the SCC.
coro::updateCallGraph(F, {ResumeClone, DestroyClone, CleanupClone}, CG, SCC);
}
// When we see the coroutine the first time, we insert an indirect call to a
// devirt trigger function and mark the coroutine that it is now ready for
// split.
static void prepareForSplit(Function &F, CallGraph &CG) {
Module &M = *F.getParent();
LLVMContext &Context = F.getContext();
#ifndef NDEBUG
Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
assert(DevirtFn && "coro.devirt.trigger function not found");
#endif
F.addFnAttr(CORO_PRESPLIT_ATTR, PREPARED_FOR_SPLIT);
// Insert an indirect call sequence that will be devirtualized by CoroElide
// pass:
// %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
// %1 = bitcast i8* %0 to void(i8*)*
// call void %1(i8* null)
coro::LowererBase Lowerer(M);
Instruction *InsertPt = F.getEntryBlock().getTerminator();
auto *Null = ConstantPointerNull::get(Type::getInt8PtrTy(Context));
auto *DevirtFnAddr =
Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
FunctionType *FnTy = FunctionType::get(Type::getVoidTy(Context),
{Type::getInt8PtrTy(Context)}, false);
auto *IndirectCall = CallInst::Create(FnTy, DevirtFnAddr, Null, "", InsertPt);
// Update CG graph with an indirect call we just added.
CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
}
// Make sure that there is a devirtualization trigger function that CoroSplit
// pass uses the force restart CGSCC pipeline. If devirt trigger function is not
// found, we will create one and add it to the current SCC.
static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC) {
Module &M = CG.getModule();
if (M.getFunction(CORO_DEVIRT_TRIGGER_FN))
return;
LLVMContext &C = M.getContext();
auto *FnTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C),
/*isVarArg=*/false);
Function *DevirtFn =
Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
CORO_DEVIRT_TRIGGER_FN, &M);
DevirtFn->addFnAttr(Attribute::AlwaysInline);
auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
ReturnInst::Create(C, Entry);
auto *Node = CG.getOrInsertFunction(DevirtFn);
SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
Nodes.push_back(Node);
SCC.initialize(Nodes);
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
struct CoroSplit : public CallGraphSCCPass {
static char ID; // Pass identification, replacement for typeid
CoroSplit() : CallGraphSCCPass(ID) {
initializeCoroSplitPass(*PassRegistry::getPassRegistry());
}
bool Run = false;
// A coroutine is identified by the presence of coro.begin intrinsic, if
// we don't have any, this pass has nothing to do.
bool doInitialization(CallGraph &CG) override {
Run = coro::declaresIntrinsics(CG.getModule(), {"llvm.coro.begin"});
return CallGraphSCCPass::doInitialization(CG);
}
bool runOnSCC(CallGraphSCC &SCC) override {
if (!Run)
return false;
// Find coroutines for processing.
SmallVector<Function *, 4> Coroutines;
for (CallGraphNode *CGN : SCC)
if (auto *F = CGN->getFunction())
if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
Coroutines.push_back(F);
if (Coroutines.empty())
return false;
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
createDevirtTriggerFunc(CG, SCC);
for (Function *F : Coroutines) {
Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
StringRef Value = Attr.getValueAsString();
LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
<< "' state: " << Value << "\n");
if (Value == UNPREPARED_FOR_SPLIT) {
prepareForSplit(*F, CG);
continue;
}
F->removeFnAttr(CORO_PRESPLIT_ATTR);
splitCoroutine(*F, CG, SCC);
}
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
CallGraphSCCPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Coroutine Splitting"; }
};
} // end anonymous namespace
char CoroSplit::ID = 0;
INITIALIZE_PASS_BEGIN(
CoroSplit, "coro-split",
"Split coroutine into a set of functions driving its state machine", false,
false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(
CoroSplit, "coro-split",
"Split coroutine into a set of functions driving its state machine", false,
false)
Pass *llvm::createCoroSplitPass() { return new CoroSplit(); }
|