1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
|
//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an inter procedural pass that deduces and/or propagating
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "attributor"
STATISTIC(NumFnWithExactDefinition,
"Number of function with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
"Number of function without exact definitions");
STATISTIC(NumAttributesTimedOut,
"Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
"Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
"Number of abstract attributes manifested in IR");
STATISTIC(NumFnNoUnwind, "Number of functions marked nounwind");
STATISTIC(NumFnUniqueReturned, "Number of function with unique return");
STATISTIC(NumFnKnownReturns, "Number of function with known return values");
STATISTIC(NumFnArgumentReturned,
"Number of function arguments marked returned");
STATISTIC(NumFnNoSync, "Number of functions marked nosync");
STATISTIC(NumFnNoFree, "Number of functions marked nofree");
STATISTIC(NumFnReturnedNonNull,
"Number of function return values marked nonnull");
STATISTIC(NumFnArgumentNonNull, "Number of function arguments marked nonnull");
STATISTIC(NumCSArgumentNonNull, "Number of call site arguments marked nonnull");
STATISTIC(NumFnWillReturn, "Number of functions marked willreturn");
// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
cl::desc("Maximal number of fixpoint iterations."),
cl::init(32));
static cl::opt<bool> DisableAttributor(
"attributor-disable", cl::Hidden,
cl::desc("Disable the attributor inter-procedural deduction pass."),
cl::init(true));
static cl::opt<bool> VerifyAttributor(
"attributor-verify", cl::Hidden,
cl::desc("Verify the Attributor deduction and "
"manifestation of attributes -- may issue false-positive errors"),
cl::init(false));
/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::CHANGED ? l : r;
}
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::UNCHANGED ? l : r;
}
///}
/// Helper to adjust the statistics.
static void bookkeeping(AbstractAttribute::ManifestPosition MP,
const Attribute &Attr) {
if (!AreStatisticsEnabled())
return;
if (!Attr.isEnumAttribute())
return;
switch (Attr.getKindAsEnum()) {
case Attribute::NoUnwind:
NumFnNoUnwind++;
return;
case Attribute::Returned:
NumFnArgumentReturned++;
return;
case Attribute::NoSync:
NumFnNoSync++;
break;
case Attribute::NoFree:
NumFnNoFree++;
break;
case Attribute::NonNull:
switch (MP) {
case AbstractAttribute::MP_RETURNED:
NumFnReturnedNonNull++;
break;
case AbstractAttribute::MP_ARGUMENT:
NumFnArgumentNonNull++;
break;
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
NumCSArgumentNonNull++;
break;
default:
break;
}
break;
case Attribute::WillReturn:
NumFnWillReturn++;
break;
default:
return;
}
}
template <typename StateTy>
using followValueCB_t = std::function<bool(Value *, StateTy &State)>;
template <typename StateTy>
using visitValueCB_t = std::function<void(Value *, StateTy &State)>;
/// Recursively visit all values that might become \p InitV at some point. This
/// will be done by looking through cast instructions, selects, phis, and calls
/// with the "returned" attribute. The callback \p FollowValueCB is asked before
/// a potential origin value is looked at. If no \p FollowValueCB is passed, a
/// default one is used that will make sure we visit every value only once. Once
/// we cannot look through the value any further, the callback \p VisitValueCB
/// is invoked and passed the current value and the \p State. To limit how much
/// effort is invested, we will never visit more than \p MaxValues values.
template <typename StateTy>
static bool genericValueTraversal(
Value *InitV, StateTy &State, visitValueCB_t<StateTy> &VisitValueCB,
followValueCB_t<StateTy> *FollowValueCB = nullptr, int MaxValues = 8) {
SmallPtrSet<Value *, 16> Visited;
followValueCB_t<bool> DefaultFollowValueCB = [&](Value *Val, bool &) {
return Visited.insert(Val).second;
};
if (!FollowValueCB)
FollowValueCB = &DefaultFollowValueCB;
SmallVector<Value *, 16> Worklist;
Worklist.push_back(InitV);
int Iteration = 0;
do {
Value *V = Worklist.pop_back_val();
// Check if we should process the current value. To prevent endless
// recursion keep a record of the values we followed!
if (!(*FollowValueCB)(V, State))
continue;
// Make sure we limit the compile time for complex expressions.
if (Iteration++ >= MaxValues)
return false;
// Explicitly look through calls with a "returned" attribute if we do
// not have a pointer as stripPointerCasts only works on them.
if (V->getType()->isPointerTy()) {
V = V->stripPointerCasts();
} else {
CallSite CS(V);
if (CS && CS.getCalledFunction()) {
Value *NewV = nullptr;
for (Argument &Arg : CS.getCalledFunction()->args())
if (Arg.hasReturnedAttr()) {
NewV = CS.getArgOperand(Arg.getArgNo());
break;
}
if (NewV) {
Worklist.push_back(NewV);
continue;
}
}
}
// Look through select instructions, visit both potential values.
if (auto *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// Look through phi nodes, visit all operands.
if (auto *PHI = dyn_cast<PHINode>(V)) {
Worklist.append(PHI->op_begin(), PHI->op_end());
continue;
}
// Once a leaf is reached we inform the user through the callback.
VisitValueCB(V, State);
} while (!Worklist.empty());
// All values have been visited.
return true;
}
/// Helper to identify the correct offset into an attribute list.
static unsigned getAttrIndex(AbstractAttribute::ManifestPosition MP,
unsigned ArgNo = 0) {
switch (MP) {
case AbstractAttribute::MP_ARGUMENT:
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
return ArgNo + AttributeList::FirstArgIndex;
case AbstractAttribute::MP_FUNCTION:
return AttributeList::FunctionIndex;
case AbstractAttribute::MP_RETURNED:
return AttributeList::ReturnIndex;
}
llvm_unreachable("Unknown manifest position!");
}
/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
if (!Old.isIntAttribute())
return true;
return Old.getValueAsInt() >= New.getValueAsInt();
}
/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p MP and \p ArgNo.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
AttributeList &Attrs,
AbstractAttribute::ManifestPosition MP,
unsigned ArgNo = 0) {
unsigned AttrIdx = getAttrIndex(MP, ArgNo);
if (Attr.isEnumAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
llvm_unreachable("Expected enum or string attribute!");
}
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
return HasChanged;
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
HasChanged = updateImpl(A);
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
<< "\n");
return HasChanged;
}
ChangeStatus AbstractAttribute::manifest(Attributor &A) {
assert(getState().isValidState() &&
"Attempted to manifest an invalid state!");
assert(getAssociatedValue() &&
"Attempted to manifest an attribute without associated value!");
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
SmallVector<Attribute, 4> DeducedAttrs;
getDeducedAttributes(DeducedAttrs);
Function &ScopeFn = getAnchorScope();
LLVMContext &Ctx = ScopeFn.getContext();
ManifestPosition MP = getManifestPosition();
AttributeList Attrs;
SmallVector<unsigned, 4> ArgNos;
// In the following some generic code that will manifest attributes in
// DeducedAttrs if they improve the current IR. Due to the different
// annotation positions we use the underlying AttributeList interface.
// Note that MP_CALL_SITE_ARGUMENT can annotate multiple locations.
switch (MP) {
case MP_ARGUMENT:
ArgNos.push_back(cast<Argument>(getAssociatedValue())->getArgNo());
Attrs = ScopeFn.getAttributes();
break;
case MP_FUNCTION:
case MP_RETURNED:
ArgNos.push_back(0);
Attrs = ScopeFn.getAttributes();
break;
case MP_CALL_SITE_ARGUMENT: {
CallSite CS(&getAnchoredValue());
for (unsigned u = 0, e = CS.getNumArgOperands(); u != e; u++)
if (CS.getArgOperand(u) == getAssociatedValue())
ArgNos.push_back(u);
Attrs = CS.getAttributes();
}
}
for (const Attribute &Attr : DeducedAttrs) {
for (unsigned ArgNo : ArgNos) {
if (!addIfNotExistent(Ctx, Attr, Attrs, MP, ArgNo))
continue;
HasChanged = ChangeStatus::CHANGED;
bookkeeping(MP, Attr);
}
}
if (HasChanged == ChangeStatus::UNCHANGED)
return HasChanged;
switch (MP) {
case MP_ARGUMENT:
case MP_FUNCTION:
case MP_RETURNED:
ScopeFn.setAttributes(Attrs);
break;
case MP_CALL_SITE_ARGUMENT:
CallSite(&getAnchoredValue()).setAttributes(Attrs);
}
return HasChanged;
}
Function &AbstractAttribute::getAnchorScope() {
Value &V = getAnchoredValue();
if (isa<Function>(V))
return cast<Function>(V);
if (isa<Argument>(V))
return *cast<Argument>(V).getParent();
if (isa<Instruction>(V))
return *cast<Instruction>(V).getFunction();
llvm_unreachable("No scope for anchored value found!");
}
const Function &AbstractAttribute::getAnchorScope() const {
return const_cast<AbstractAttribute *>(this)->getAnchorScope();
}
/// -----------------------NoUnwind Function Attribute--------------------------
struct AANoUnwindFunction : AANoUnwind, BooleanState {
AANoUnwindFunction(Function &F, InformationCache &InfoCache)
: AANoUnwind(F, InfoCache) {}
/// See AbstractAttribute::getState()
/// {
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
/// }
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }
const std::string getAsStr() const override {
return getAssumed() ? "nounwind" : "may-unwind";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AANoUnwind::isAssumedNoUnwind().
bool isAssumedNoUnwind() const override { return getAssumed(); }
/// See AANoUnwind::isKnownNoUnwind().
bool isKnownNoUnwind() const override { return getKnown(); }
};
ChangeStatus AANoUnwindFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
auto Opcodes = {
(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
(unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
for (unsigned Opcode : Opcodes) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
if (!I->mayThrow())
continue;
auto *NoUnwindAA = A.getAAFor<AANoUnwind>(*this, *I);
if (!NoUnwindAA || !NoUnwindAA->isAssumedNoUnwind()) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
}
return ChangeStatus::UNCHANGED;
}
/// --------------------- Function Return Values -------------------------------
/// "Attribute" that collects all potential returned values and the return
/// instructions that they arise from.
///
/// If there is a unique returned value R, the manifest method will:
/// - mark R with the "returned" attribute, if R is an argument.
class AAReturnedValuesImpl final : public AAReturnedValues, AbstractState {
/// Mapping of values potentially returned by the associated function to the
/// return instructions that might return them.
DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> ReturnedValues;
/// State flags
///
///{
bool IsFixed;
bool IsValidState;
bool HasOverdefinedReturnedCalls;
///}
/// Collect values that could become \p V in the set \p Values, each mapped to
/// \p ReturnInsts.
void collectValuesRecursively(
Attributor &A, Value *V, SmallPtrSetImpl<ReturnInst *> &ReturnInsts,
DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> &Values) {
visitValueCB_t<bool> VisitValueCB = [&](Value *Val, bool &) {
assert(!isa<Instruction>(Val) ||
&getAnchorScope() == cast<Instruction>(Val)->getFunction());
Values[Val].insert(ReturnInsts.begin(), ReturnInsts.end());
};
bool UnusedBool;
bool Success = genericValueTraversal(V, UnusedBool, VisitValueCB);
// If we did abort the above traversal we haven't see all the values.
// Consequently, we cannot know if the information we would derive is
// accurate so we give up early.
if (!Success)
indicatePessimisticFixpoint();
}
public:
/// See AbstractAttribute::AbstractAttribute(...).
AAReturnedValuesImpl(Function &F, InformationCache &InfoCache)
: AAReturnedValues(F, InfoCache) {
// We do not have an associated argument yet.
AssociatedVal = nullptr;
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// Reset the state.
AssociatedVal = nullptr;
IsFixed = false;
IsValidState = true;
HasOverdefinedReturnedCalls = false;
ReturnedValues.clear();
Function &F = cast<Function>(getAnchoredValue());
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
// Look through all arguments, if one is marked as returned we are done.
for (Argument &Arg : F.args()) {
if (Arg.hasReturnedAttr()) {
auto &ReturnInstSet = ReturnedValues[&Arg];
for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
ReturnInstSet.insert(cast<ReturnInst>(RI));
indicateOptimisticFixpoint();
return;
}
}
// If no argument was marked as returned we look at all return instructions
// and collect potentially returned values.
for (Instruction *RI : OpcodeInstMap[Instruction::Ret]) {
SmallPtrSet<ReturnInst *, 1> RISet({cast<ReturnInst>(RI)});
collectValuesRecursively(A, cast<ReturnInst>(RI)->getReturnValue(), RISet,
ReturnedValues);
}
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override;
/// See AbstractAttribute::getState(...).
AbstractState &getState() override { return *this; }
/// See AbstractAttribute::getState(...).
const AbstractState &getState() const override { return *this; }
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; }
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override;
/// Return the number of potential return values, -1 if unknown.
size_t getNumReturnValues() const {
return isValidState() ? ReturnedValues.size() : -1;
}
/// Return an assumed unique return value if a single candidate is found. If
/// there cannot be one, return a nullptr. If it is not clear yet, return the
/// Optional::NoneType.
Optional<Value *> getAssumedUniqueReturnValue() const;
/// See AbstractState::checkForallReturnedValues(...).
bool
checkForallReturnedValues(std::function<bool(Value &)> &Pred) const override;
/// Pretty print the attribute similar to the IR representation.
const std::string getAsStr() const override;
/// See AbstractState::isAtFixpoint().
bool isAtFixpoint() const override { return IsFixed; }
/// See AbstractState::isValidState().
bool isValidState() const override { return IsValidState; }
/// See AbstractState::indicateOptimisticFixpoint(...).
void indicateOptimisticFixpoint() override {
IsFixed = true;
IsValidState &= true;
}
void indicatePessimisticFixpoint() override {
IsFixed = true;
IsValidState = false;
}
};
ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
// Bookkeeping.
assert(isValidState());
NumFnKnownReturns++;
// Check if we have an assumed unique return value that we could manifest.
Optional<Value *> UniqueRV = getAssumedUniqueReturnValue();
if (!UniqueRV.hasValue() || !UniqueRV.getValue())
return Changed;
// Bookkeeping.
NumFnUniqueReturned++;
// If the assumed unique return value is an argument, annotate it.
if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
AssociatedVal = UniqueRVArg;
Changed = AbstractAttribute::manifest(A) | Changed;
}
return Changed;
}
const std::string AAReturnedValuesImpl::getAsStr() const {
return (isAtFixpoint() ? "returns(#" : "may-return(#") +
(isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
}
Optional<Value *> AAReturnedValuesImpl::getAssumedUniqueReturnValue() const {
// If checkForallReturnedValues provides a unique value, ignoring potential
// undef values that can also be present, it is assumed to be the actual
// return value and forwarded to the caller of this method. If there are
// multiple, a nullptr is returned indicating there cannot be a unique
// returned value.
Optional<Value *> UniqueRV;
std::function<bool(Value &)> Pred = [&](Value &RV) -> bool {
// If we found a second returned value and neither the current nor the saved
// one is an undef, there is no unique returned value. Undefs are special
// since we can pretend they have any value.
if (UniqueRV.hasValue() && UniqueRV != &RV &&
!(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
UniqueRV = nullptr;
return false;
}
// Do not overwrite a value with an undef.
if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
UniqueRV = &RV;
return true;
};
if (!checkForallReturnedValues(Pred))
UniqueRV = nullptr;
return UniqueRV;
}
bool AAReturnedValuesImpl::checkForallReturnedValues(
std::function<bool(Value &)> &Pred) const {
if (!isValidState())
return false;
// Check all returned values but ignore call sites as long as we have not
// encountered an overdefined one during an update.
for (auto &It : ReturnedValues) {
Value *RV = It.first;
ImmutableCallSite ICS(RV);
if (ICS && !HasOverdefinedReturnedCalls)
continue;
if (!Pred(*RV))
return false;
}
return true;
}
ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
// Check if we know of any values returned by the associated function,
// if not, we are done.
if (getNumReturnValues() == 0) {
indicateOptimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
// Check if any of the returned values is a call site we can refine.
decltype(ReturnedValues) AddRVs;
bool HasCallSite = false;
// Look at all returned call sites.
for (auto &It : ReturnedValues) {
SmallPtrSet<ReturnInst *, 2> &ReturnInsts = It.second;
Value *RV = It.first;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Potentially returned value " << *RV
<< "\n");
// Only call sites can change during an update, ignore the rest.
CallSite RetCS(RV);
if (!RetCS)
continue;
// For now, any call site we see will prevent us from directly fixing the
// state. However, if the information on the callees is fixed, the call
// sites will be removed and we will fix the information for this state.
HasCallSite = true;
// Try to find a assumed unique return value for the called function.
auto *RetCSAA = A.getAAFor<AAReturnedValuesImpl>(*this, *RV);
if (!RetCSAA) {
HasOverdefinedReturnedCalls = true;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site (" << *RV
<< ") with " << (RetCSAA ? "invalid" : "no")
<< " associated state\n");
continue;
}
// Try to find a assumed unique return value for the called function.
Optional<Value *> AssumedUniqueRV = RetCSAA->getAssumedUniqueReturnValue();
// If no assumed unique return value was found due to the lack of
// candidates, we may need to resolve more calls (through more update
// iterations) or the called function will not return. Either way, we simply
// stick with the call sites as return values. Because there were not
// multiple possibilities, we do not treat it as overdefined.
if (!AssumedUniqueRV.hasValue())
continue;
// If multiple, non-refinable values were found, there cannot be a unique
// return value for the called function. The returned call is overdefined!
if (!AssumedUniqueRV.getValue()) {
HasOverdefinedReturnedCalls = true;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned call site has multiple "
"potentially returned values\n");
continue;
}
LLVM_DEBUG({
bool UniqueRVIsKnown = RetCSAA->isAtFixpoint();
dbgs() << "[AAReturnedValues] Returned call site "
<< (UniqueRVIsKnown ? "known" : "assumed")
<< " unique return value: " << *AssumedUniqueRV << "\n";
});
// The assumed unique return value.
Value *AssumedRetVal = AssumedUniqueRV.getValue();
// If the assumed unique return value is an argument, lookup the matching
// call site operand and recursively collect new returned values.
// If it is not an argument, it is just put into the set of returned values
// as we would have already looked through casts, phis, and similar values.
if (Argument *AssumedRetArg = dyn_cast<Argument>(AssumedRetVal))
collectValuesRecursively(A,
RetCS.getArgOperand(AssumedRetArg->getArgNo()),
ReturnInsts, AddRVs);
else
AddRVs[AssumedRetVal].insert(ReturnInsts.begin(), ReturnInsts.end());
}
// Keep track of any change to trigger updates on dependent attributes.
ChangeStatus Changed = ChangeStatus::UNCHANGED;
for (auto &It : AddRVs) {
assert(!It.second.empty() && "Entry does not add anything.");
auto &ReturnInsts = ReturnedValues[It.first];
for (ReturnInst *RI : It.second)
if (ReturnInsts.insert(RI).second) {
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
<< *It.first << " => " << *RI << "\n");
Changed = ChangeStatus::CHANGED;
}
}
// If there is no call site in the returned values we are done.
if (!HasCallSite) {
indicateOptimisticFixpoint();
return ChangeStatus::CHANGED;
}
return Changed;
}
/// ------------------------ NoSync Function Attribute -------------------------
struct AANoSyncFunction : AANoSync, BooleanState {
AANoSyncFunction(Function &F, InformationCache &InfoCache)
: AANoSync(F, InfoCache) {}
/// See AbstractAttribute::getState()
/// {
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
/// }
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }
const std::string getAsStr() const override {
return getAssumed() ? "nosync" : "may-sync";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AANoSync::isAssumedNoSync()
bool isAssumedNoSync() const override { return getAssumed(); }
/// See AANoSync::isKnownNoSync()
bool isKnownNoSync() const override { return getKnown(); }
/// Helper function used to determine whether an instruction is non-relaxed
/// atomic. In other words, if an atomic instruction does not have unordered
/// or monotonic ordering
static bool isNonRelaxedAtomic(Instruction *I);
/// Helper function used to determine whether an instruction is volatile.
static bool isVolatile(Instruction *I);
/// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
/// memset).
static bool isNoSyncIntrinsic(Instruction *I);
};
bool AANoSyncFunction::isNonRelaxedAtomic(Instruction *I) {
if (!I->isAtomic())
return false;
AtomicOrdering Ordering;
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
Ordering = cast<AtomicRMWInst>(I)->getOrdering();
break;
case Instruction::Store:
Ordering = cast<StoreInst>(I)->getOrdering();
break;
case Instruction::Load:
Ordering = cast<LoadInst>(I)->getOrdering();
break;
case Instruction::Fence: {
auto *FI = cast<FenceInst>(I);
if (FI->getSyncScopeID() == SyncScope::SingleThread)
return false;
Ordering = FI->getOrdering();
break;
}
case Instruction::AtomicCmpXchg: {
AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
// Only if both are relaxed, than it can be treated as relaxed.
// Otherwise it is non-relaxed.
if (Success != AtomicOrdering::Unordered &&
Success != AtomicOrdering::Monotonic)
return true;
if (Failure != AtomicOrdering::Unordered &&
Failure != AtomicOrdering::Monotonic)
return true;
return false;
}
default:
llvm_unreachable(
"New atomic operations need to be known in the attributor.");
}
// Relaxed.
if (Ordering == AtomicOrdering::Unordered ||
Ordering == AtomicOrdering::Monotonic)
return false;
return true;
}
/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
/// FIXME: We should ipmrove the handling of intrinsics.
bool AANoSyncFunction::isNoSyncIntrinsic(Instruction *I) {
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
/// Element wise atomic memory intrinsics are can only be unordered,
/// therefore nosync.
case Intrinsic::memset_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memcpy_element_unordered_atomic:
return true;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
if (!cast<MemIntrinsic>(II)->isVolatile())
return true;
return false;
default:
return false;
}
}
return false;
}
bool AANoSyncFunction::isVolatile(Instruction *I) {
assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
"Calls should not be checked here");
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(I)->isVolatile();
case Instruction::Store:
return cast<StoreInst>(I)->isVolatile();
case Instruction::Load:
return cast<LoadInst>(I)->isVolatile();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(I)->isVolatile();
default:
return false;
}
}
ChangeStatus AANoSyncFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
/// We are looking for volatile instructions or Non-Relaxed atomics.
/// FIXME: We should ipmrove the handling of intrinsics.
for (Instruction *I : InfoCache.getReadOrWriteInstsForFunction(F)) {
ImmutableCallSite ICS(I);
auto *NoSyncAA = A.getAAFor<AANoSyncFunction>(*this, *I);
if (isa<IntrinsicInst>(I) && isNoSyncIntrinsic(I))
continue;
if (ICS && (!NoSyncAA || !NoSyncAA->isAssumedNoSync()) &&
!ICS.hasFnAttr(Attribute::NoSync)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
if (ICS)
continue;
if (!isVolatile(I) && !isNonRelaxedAtomic(I))
continue;
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
auto Opcodes = {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call};
for (unsigned Opcode : Opcodes) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
// At this point we handled all read/write effects and they are all
// nosync, so they can be skipped.
if (I->mayReadOrWriteMemory())
continue;
ImmutableCallSite ICS(I);
// non-convergent and readnone imply nosync.
if (!ICS.isConvergent())
continue;
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
return ChangeStatus::UNCHANGED;
}
/// ------------------------ No-Free Attributes ----------------------------
struct AANoFreeFunction : AbstractAttribute, BooleanState {
/// See AbstractAttribute::AbstractAttribute(...).
AANoFreeFunction(Function &F, InformationCache &InfoCache)
: AbstractAttribute(F, InfoCache) {}
/// See AbstractAttribute::getState()
///{
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
///}
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_FUNCTION; }
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nofree" : "may-free";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AbstractAttribute::getAttrKind().
Attribute::AttrKind getAttrKind() const override { return ID; }
/// Return true if "nofree" is assumed.
bool isAssumedNoFree() const { return getAssumed(); }
/// Return true if "nofree" is known.
bool isKnownNoFree() const { return getKnown(); }
/// The identifier used by the Attributor for this class of attributes.
static constexpr Attribute::AttrKind ID = Attribute::NoFree;
};
ChangeStatus AANoFreeFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
for (unsigned Opcode :
{(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call}) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
auto ICS = ImmutableCallSite(I);
auto *NoFreeAA = A.getAAFor<AANoFreeFunction>(*this, *I);
if ((!NoFreeAA || !NoFreeAA->isAssumedNoFree()) &&
!ICS.hasFnAttr(Attribute::NoFree)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
}
return ChangeStatus::UNCHANGED;
}
/// ------------------------ NonNull Argument Attribute ------------------------
struct AANonNullImpl : AANonNull, BooleanState {
AANonNullImpl(Value &V, InformationCache &InfoCache)
: AANonNull(V, InfoCache) {}
AANonNullImpl(Value *AssociatedVal, Value &AnchoredValue,
InformationCache &InfoCache)
: AANonNull(AssociatedVal, AnchoredValue, InfoCache) {}
/// See AbstractAttribute::getState()
/// {
AbstractState &getState() override { return *this; }
const AbstractState &getState() const override { return *this; }
/// }
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nonnull" : "may-null";
}
/// See AANonNull::isAssumedNonNull().
bool isAssumedNonNull() const override { return getAssumed(); }
/// See AANonNull::isKnownNonNull().
bool isKnownNonNull() const override { return getKnown(); }
/// Generate a predicate that checks if a given value is assumed nonnull.
/// The generated function returns true if a value satisfies any of
/// following conditions.
/// (i) A value is known nonZero(=nonnull).
/// (ii) A value is associated with AANonNull and its isAssumedNonNull() is
/// true.
std::function<bool(Value &)> generatePredicate(Attributor &);
};
std::function<bool(Value &)> AANonNullImpl::generatePredicate(Attributor &A) {
// FIXME: The `AAReturnedValues` should provide the predicate with the
// `ReturnInst` vector as well such that we can use the control flow sensitive
// version of `isKnownNonZero`. This should fix `test11` in
// `test/Transforms/FunctionAttrs/nonnull.ll`
std::function<bool(Value &)> Pred = [&](Value &RV) -> bool {
if (isKnownNonZero(&RV, getAnchorScope().getParent()->getDataLayout()))
return true;
auto *NonNullAA = A.getAAFor<AANonNull>(*this, RV);
ImmutableCallSite ICS(&RV);
if ((!NonNullAA || !NonNullAA->isAssumedNonNull()) &&
(!ICS || !ICS.hasRetAttr(Attribute::NonNull)))
return false;
return true;
};
return Pred;
}
/// NonNull attribute for function return value.
struct AANonNullReturned : AANonNullImpl {
AANonNullReturned(Function &F, InformationCache &InfoCache)
: AANonNullImpl(F, InfoCache) {}
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_RETURNED; }
/// See AbstractAttriubute::initialize(...).
void initialize(Attributor &A) override {
Function &F = getAnchorScope();
// Already nonnull.
if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
Attribute::NonNull))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
};
ChangeStatus AANonNullReturned::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
auto *AARetVal = A.getAAFor<AAReturnedValues>(*this, F);
if (!AARetVal) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
std::function<bool(Value &)> Pred = this->generatePredicate(A);
if (!AARetVal->checkForallReturnedValues(Pred)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
return ChangeStatus::UNCHANGED;
}
/// NonNull attribute for function argument.
struct AANonNullArgument : AANonNullImpl {
AANonNullArgument(Argument &A, InformationCache &InfoCache)
: AANonNullImpl(A, InfoCache) {}
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override { return MP_ARGUMENT; }
/// See AbstractAttriubute::initialize(...).
void initialize(Attributor &A) override {
Argument *Arg = cast<Argument>(getAssociatedValue());
if (Arg->hasNonNullAttr())
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
};
/// NonNull attribute for a call site argument.
struct AANonNullCallSiteArgument : AANonNullImpl {
/// See AANonNullImpl::AANonNullImpl(...).
AANonNullCallSiteArgument(CallSite CS, unsigned ArgNo,
InformationCache &InfoCache)
: AANonNullImpl(CS.getArgOperand(ArgNo), *CS.getInstruction(), InfoCache),
ArgNo(ArgNo) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
CallSite CS(&getAnchoredValue());
if (isKnownNonZero(getAssociatedValue(),
getAnchorScope().getParent()->getDataLayout()) ||
CS.paramHasAttr(ArgNo, getAttrKind()))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override;
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override {
return MP_CALL_SITE_ARGUMENT;
};
// Return argument index of associated value.
int getArgNo() const { return ArgNo; }
private:
unsigned ArgNo;
};
ChangeStatus AANonNullArgument::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
Argument &Arg = cast<Argument>(getAnchoredValue());
unsigned ArgNo = Arg.getArgNo();
// Callback function
std::function<bool(CallSite)> CallSiteCheck = [&](CallSite CS) {
assert(CS && "Sanity check: Call site was not initialized properly!");
auto *NonNullAA = A.getAAFor<AANonNull>(*this, *CS.getInstruction(), ArgNo);
// Check that NonNullAA is AANonNullCallSiteArgument.
if (NonNullAA) {
ImmutableCallSite ICS(&NonNullAA->getAnchoredValue());
if (ICS && CS.getInstruction() == ICS.getInstruction())
return NonNullAA->isAssumedNonNull();
return false;
}
if (CS.paramHasAttr(ArgNo, Attribute::NonNull))
return true;
Value *V = CS.getArgOperand(ArgNo);
if (isKnownNonZero(V, getAnchorScope().getParent()->getDataLayout()))
return true;
return false;
};
if (!A.checkForAllCallSites(F, CallSiteCheck, true)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
return ChangeStatus::UNCHANGED;
}
ChangeStatus AANonNullCallSiteArgument::updateImpl(Attributor &A) {
// NOTE: Never look at the argument of the callee in this method.
// If we do this, "nonnull" is always deduced because of the assumption.
Value &V = *getAssociatedValue();
auto *NonNullAA = A.getAAFor<AANonNull>(*this, V);
if (!NonNullAA || !NonNullAA->isAssumedNonNull()) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
return ChangeStatus::UNCHANGED;
}
/// ------------------------ Will-Return Attributes ----------------------------
struct AAWillReturnImpl : public AAWillReturn, BooleanState {
/// See AbstractAttribute::AbstractAttribute(...).
AAWillReturnImpl(Function &F, InformationCache &InfoCache)
: AAWillReturn(F, InfoCache) {}
/// See AAWillReturn::isKnownWillReturn().
bool isKnownWillReturn() const override { return getKnown(); }
/// See AAWillReturn::isAssumedWillReturn().
bool isAssumedWillReturn() const override { return getAssumed(); }
/// See AbstractAttribute::getState(...).
AbstractState &getState() override { return *this; }
/// See AbstractAttribute::getState(...).
const AbstractState &getState() const override { return *this; }
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
return getAssumed() ? "willreturn" : "may-noreturn";
}
};
struct AAWillReturnFunction final : AAWillReturnImpl {
/// See AbstractAttribute::AbstractAttribute(...).
AAWillReturnFunction(Function &F, InformationCache &InfoCache)
: AAWillReturnImpl(F, InfoCache) {}
/// See AbstractAttribute::getManifestPosition().
ManifestPosition getManifestPosition() const override {
return MP_FUNCTION;
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override;
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
};
// Helper function that checks whether a function has any cycle.
// TODO: Replace with more efficent code
bool containsCycle(Function &F) {
SmallPtrSet<BasicBlock *, 32> Visited;
// Traverse BB by dfs and check whether successor is already visited.
for (BasicBlock *BB : depth_first(&F)) {
Visited.insert(BB);
for (auto *SuccBB : successors(BB)) {
if (Visited.count(SuccBB))
return true;
}
}
return false;
}
// Helper function that checks the function have a loop which might become an
// endless loop
// FIXME: Any cycle is regarded as endless loop for now.
// We have to allow some patterns.
bool containsPossiblyEndlessLoop(Function &F) { return containsCycle(F); }
void AAWillReturnFunction::initialize(Attributor &A) {
Function &F = getAnchorScope();
if (containsPossiblyEndlessLoop(F))
indicatePessimisticFixpoint();
}
ChangeStatus AAWillReturnFunction::updateImpl(Attributor &A) {
Function &F = getAnchorScope();
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
for (unsigned Opcode :
{(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call}) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
auto ICS = ImmutableCallSite(I);
if (ICS.hasFnAttr(Attribute::WillReturn))
continue;
auto *WillReturnAA = A.getAAFor<AAWillReturn>(*this, *I);
if (!WillReturnAA || !WillReturnAA->isAssumedWillReturn()) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
auto *NoRecurseAA = A.getAAFor<AANoRecurse>(*this, *I);
// FIXME: (i) Prohibit any recursion for now.
// (ii) AANoRecurse isn't implemented yet so currently any call is
// regarded as having recursion.
// Code below should be
// if ((!NoRecurseAA || !NoRecurseAA->isAssumedNoRecurse()) &&
if (!NoRecurseAA && !ICS.hasFnAttr(Attribute::NoRecurse)) {
indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
}
}
return ChangeStatus::UNCHANGED;
}
/// ----------------------------------------------------------------------------
/// Attributor
/// ----------------------------------------------------------------------------
bool Attributor::checkForAllCallSites(Function &F,
std::function<bool(CallSite)> &Pred,
bool RequireAllCallSites) {
// We can try to determine information from
// the call sites. However, this is only possible all call sites are known,
// hence the function has internal linkage.
if (RequireAllCallSites && !F.hasInternalLinkage()) {
LLVM_DEBUG(
dbgs()
<< "Attributor: Function " << F.getName()
<< " has no internal linkage, hence not all call sites are known\n");
return false;
}
for (const Use &U : F.uses()) {
CallSite CS(U.getUser());
if (!CS || !CS.isCallee(&U) || !CS.getCaller()->hasExactDefinition()) {
if (!RequireAllCallSites)
continue;
LLVM_DEBUG(dbgs() << "Attributor: User " << *U.getUser()
<< " is an invalid use of " << F.getName() << "\n");
return false;
}
if (Pred(CS))
continue;
LLVM_DEBUG(dbgs() << "Attributor: Call site callback failed for "
<< *CS.getInstruction() << "\n");
return false;
}
return true;
}
ChangeStatus Attributor::run() {
// Initialize all abstract attributes.
for (AbstractAttribute *AA : AllAbstractAttributes)
AA->initialize(*this);
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
<< AllAbstractAttributes.size()
<< " abstract attributes.\n");
// Now that all abstract attributes are collected and initialized we start
// the abstract analysis.
unsigned IterationCounter = 1;
SmallVector<AbstractAttribute *, 64> ChangedAAs;
SetVector<AbstractAttribute *> Worklist;
Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
do {
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
<< ", Worklist size: " << Worklist.size() << "\n");
// Add all abstract attributes that are potentially dependent on one that
// changed to the work list.
for (AbstractAttribute *ChangedAA : ChangedAAs) {
auto &QuerriedAAs = QueryMap[ChangedAA];
Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
}
// Reset the changed set.
ChangedAAs.clear();
// Update all abstract attribute in the work list and record the ones that
// changed.
for (AbstractAttribute *AA : Worklist)
if (AA->update(*this) == ChangeStatus::CHANGED)
ChangedAAs.push_back(AA);
// Reset the work list and repopulate with the changed abstract attributes.
// Note that dependent ones are added above.
Worklist.clear();
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
} while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxFixpointIterations
<< " iterations\n");
bool FinishedAtFixpoint = Worklist.empty();
// Reset abstract arguments not settled in a sound fixpoint by now. This
// happens when we stopped the fixpoint iteration early. Note that only the
// ones marked as "changed" *and* the ones transitively depending on them
// need to be reverted to a pessimistic state. Others might not be in a
// fixpoint state but we can use the optimistic results for them anyway.
SmallPtrSet<AbstractAttribute *, 32> Visited;
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
AbstractAttribute *ChangedAA = ChangedAAs[u];
if (!Visited.insert(ChangedAA).second)
continue;
AbstractState &State = ChangedAA->getState();
if (!State.isAtFixpoint()) {
State.indicatePessimisticFixpoint();
NumAttributesTimedOut++;
}
auto &QuerriedAAs = QueryMap[ChangedAA];
ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
}
LLVM_DEBUG({
if (!Visited.empty())
dbgs() << "\n[Attributor] Finalized " << Visited.size()
<< " abstract attributes.\n";
});
unsigned NumManifested = 0;
unsigned NumAtFixpoint = 0;
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
for (AbstractAttribute *AA : AllAbstractAttributes) {
AbstractState &State = AA->getState();
// If there is not already a fixpoint reached, we can now take the
// optimistic state. This is correct because we enforced a pessimistic one
// on abstract attributes that were transitively dependent on a changed one
// already above.
if (!State.isAtFixpoint())
State.indicateOptimisticFixpoint();
// If the state is invalid, we do not try to manifest it.
if (!State.isValidState())
continue;
// Manifest the state and record if we changed the IR.
ChangeStatus LocalChange = AA->manifest(*this);
ManifestChange = ManifestChange | LocalChange;
NumAtFixpoint++;
NumManifested += (LocalChange == ChangeStatus::CHANGED);
}
(void)NumManifested;
(void)NumAtFixpoint;
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
<< " arguments while " << NumAtFixpoint
<< " were in a valid fixpoint state\n");
// If verification is requested, we finished this run at a fixpoint, and the
// IR was changed, we re-run the whole fixpoint analysis, starting at
// re-initialization of the arguments. This re-run should not result in an IR
// change. Though, the (virtual) state of attributes at the end of the re-run
// might be more optimistic than the known state or the IR state if the better
// state cannot be manifested.
if (VerifyAttributor && FinishedAtFixpoint &&
ManifestChange == ChangeStatus::CHANGED) {
VerifyAttributor = false;
ChangeStatus VerifyStatus = run();
if (VerifyStatus != ChangeStatus::UNCHANGED)
llvm_unreachable(
"Attributor verification failed, re-run did result in an IR change "
"even after a fixpoint was reached in the original run. (False "
"positives possible!)");
VerifyAttributor = true;
}
NumAttributesManifested += NumManifested;
NumAttributesValidFixpoint += NumAtFixpoint;
return ManifestChange;
}
void Attributor::identifyDefaultAbstractAttributes(
Function &F, InformationCache &InfoCache,
DenseSet</* Attribute::AttrKind */ unsigned> *Whitelist) {
// Every function can be nounwind.
registerAA(*new AANoUnwindFunction(F, InfoCache));
// Every function might be marked "nosync"
registerAA(*new AANoSyncFunction(F, InfoCache));
// Every function might be "no-free".
registerAA(*new AANoFreeFunction(F, InfoCache));
// Return attributes are only appropriate if the return type is non void.
Type *ReturnType = F.getReturnType();
if (!ReturnType->isVoidTy()) {
// Argument attribute "returned" --- Create only one per function even
// though it is an argument attribute.
if (!Whitelist || Whitelist->count(AAReturnedValues::ID))
registerAA(*new AAReturnedValuesImpl(F, InfoCache));
// Every function with pointer return type might be marked nonnull.
if (ReturnType->isPointerTy() &&
(!Whitelist || Whitelist->count(AANonNullReturned::ID)))
registerAA(*new AANonNullReturned(F, InfoCache));
}
// Every argument with pointer type might be marked nonnull.
for (Argument &Arg : F.args()) {
if (Arg.getType()->isPointerTy())
registerAA(*new AANonNullArgument(Arg, InfoCache));
}
// Every function might be "will-return".
registerAA(*new AAWillReturnFunction(F, InfoCache));
// Walk all instructions to find more attribute opportunities and also
// interesting instructions that might be queried by abstract attributes
// during their initialization or update.
auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
for (Instruction &I : instructions(&F)) {
bool IsInterestingOpcode = false;
// To allow easy access to all instructions in a function with a given
// opcode we store them in the InfoCache. As not all opcodes are interesting
// to concrete attributes we only cache the ones that are as identified in
// the following switch.
// Note: There are no concrete attributes now so this is initially empty.
switch (I.getOpcode()) {
default:
assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
"New call site/base instruction type needs to be known int the "
"attributor.");
break;
case Instruction::Call:
case Instruction::CallBr:
case Instruction::Invoke:
case Instruction::CleanupRet:
case Instruction::CatchSwitch:
case Instruction::Resume:
case Instruction::Ret:
IsInterestingOpcode = true;
}
if (IsInterestingOpcode)
InstOpcodeMap[I.getOpcode()].push_back(&I);
if (I.mayReadOrWriteMemory())
ReadOrWriteInsts.push_back(&I);
CallSite CS(&I);
if (CS && CS.getCalledFunction()) {
for (int i = 0, e = CS.getCalledFunction()->arg_size(); i < e; i++) {
if (!CS.getArgument(i)->getType()->isPointerTy())
continue;
// Call site argument attribute "non-null".
registerAA(*new AANonNullCallSiteArgument(CS, i, InfoCache), i);
}
}
}
}
/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
AbstractAttribute::ManifestPosition AP) {
switch (AP) {
case AbstractAttribute::MP_ARGUMENT:
return OS << "arg";
case AbstractAttribute::MP_CALL_SITE_ARGUMENT:
return OS << "cs_arg";
case AbstractAttribute::MP_FUNCTION:
return OS << "fn";
case AbstractAttribute::MP_RETURNED:
return OS << "fn_ret";
}
llvm_unreachable("Unknown attribute position!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
AA.print(OS);
return OS;
}
void AbstractAttribute::print(raw_ostream &OS) const {
OS << "[" << getManifestPosition() << "][" << getAsStr() << "]["
<< AnchoredVal.getName() << "]";
}
///}
/// ----------------------------------------------------------------------------
/// Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------
static bool runAttributorOnModule(Module &M) {
if (DisableAttributor)
return false;
LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
<< " functions.\n");
// Create an Attributor and initially empty information cache that is filled
// while we identify default attribute opportunities.
Attributor A;
InformationCache InfoCache;
for (Function &F : M) {
// TODO: Not all attributes require an exact definition. Find a way to
// enable deduction for some but not all attributes in case the
// definition might be changed at runtime, see also
// http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
// TODO: We could always determine abstract attributes and if sufficient
// information was found we could duplicate the functions that do not
// have an exact definition.
if (!F.hasExactDefinition()) {
NumFnWithoutExactDefinition++;
continue;
}
// For now we ignore naked and optnone functions.
if (F.hasFnAttribute(Attribute::Naked) ||
F.hasFnAttribute(Attribute::OptimizeNone))
continue;
NumFnWithExactDefinition++;
// Populate the Attributor with abstract attribute opportunities in the
// function and the information cache with IR information.
A.identifyDefaultAbstractAttributes(F, InfoCache);
}
return A.run() == ChangeStatus::CHANGED;
}
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
if (runAttributorOnModule(M)) {
// FIXME: Think about passes we will preserve and add them here.
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
namespace {
struct AttributorLegacyPass : public ModulePass {
static char ID;
AttributorLegacyPass() : ModulePass(ID) {
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
return runAttributorOnModule(M);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: Think about passes we will preserve and add them here.
AU.setPreservesCFG();
}
};
} // end anonymous namespace
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
char AttributorLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
|