1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
//===- DivRemPairs.cpp - Hoist/decompose division and remainder -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass hoists and/or decomposes integer division and remainder
// instructions to enable CFG improvements and better codegen.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DivRemPairs.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
using namespace llvm;
#define DEBUG_TYPE "div-rem-pairs"
STATISTIC(NumPairs, "Number of div/rem pairs");
STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumDecomposed, "Number of instructions decomposed");
DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
"Controls transformations in div-rem-pairs pass");
/// A thin wrapper to store two values that we matched as div-rem pair.
/// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
struct DivRemPairWorklistEntry {
/// The actual udiv/sdiv instruction. Source of truth.
AssertingVH<Instruction> DivInst;
/// The instruction that we have matched as a remainder instruction.
/// Should only be used as Value, don't introspect it.
AssertingVH<Instruction> RemInst;
DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
: DivInst(DivInst_), RemInst(RemInst_) {
assert((DivInst->getOpcode() == Instruction::UDiv ||
DivInst->getOpcode() == Instruction::SDiv) &&
"Not a division.");
assert(DivInst->getType() == RemInst->getType() && "Types should match.");
// We can't check anything else about remainder instruction,
// it's not strictly required to be a urem/srem.
}
/// The type for this pair, identical for both the div and rem.
Type *getType() const { return DivInst->getType(); }
/// Is this pair signed or unsigned?
bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
/// In this pair, what are the divident and divisor?
Value *getDividend() const { return DivInst->getOperand(0); }
Value *getDivisor() const { return DivInst->getOperand(1); }
};
using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
/// Find matching pairs of integer div/rem ops (they have the same numerator,
/// denominator, and signedness). Place those pairs into a worklist for further
/// processing. This indirection is needed because we have to use TrackingVH<>
/// because we will be doing RAUW, and if one of the rem instructions we change
/// happens to be an input to another div/rem in the maps, we'd have problems.
static DivRemWorklistTy getWorklist(Function &F) {
// Insert all divide and remainder instructions into maps keyed by their
// operands and opcode (signed or unsigned).
DenseMap<DivRemMapKey, Instruction *> DivMap;
// Use a MapVector for RemMap so that instructions are moved/inserted in a
// deterministic order.
MapVector<DivRemMapKey, Instruction *> RemMap;
for (auto &BB : F) {
for (auto &I : BB) {
if (I.getOpcode() == Instruction::SDiv)
DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
else if (I.getOpcode() == Instruction::UDiv)
DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
else if (I.getOpcode() == Instruction::SRem)
RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
else if (I.getOpcode() == Instruction::URem)
RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
}
}
// We'll accumulate the matching pairs of div-rem instructions here.
DivRemWorklistTy Worklist;
// We can iterate over either map because we are only looking for matched
// pairs. Choose remainders for efficiency because they are usually even more
// rare than division.
for (auto &RemPair : RemMap) {
// Find the matching division instruction from the division map.
Instruction *DivInst = DivMap[RemPair.first];
if (!DivInst)
continue;
// We have a matching pair of div/rem instructions.
NumPairs++;
Instruction *RemInst = RemPair.second;
// Place it in the worklist.
Worklist.emplace_back(DivInst, RemInst);
}
return Worklist;
}
/// Find matching pairs of integer div/rem ops (they have the same numerator,
/// denominator, and signedness). If they exist in different basic blocks, bring
/// them together by hoisting or replace the common division operation that is
/// implicit in the remainder:
/// X % Y <--> X - ((X / Y) * Y).
///
/// We can largely ignore the normal safety and cost constraints on speculation
/// of these ops when we find a matching pair. This is because we are already
/// guaranteed that any exceptions and most cost are already incurred by the
/// first member of the pair.
///
/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
/// SimplifyCFG, but it's split off on its own because it's different enough
/// that it doesn't quite match the stated objectives of those passes.
static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT) {
bool Changed = false;
// Get the matching pairs of div-rem instructions. We want this extra
// indirection to avoid dealing with having to RAUW the keys of the maps.
DivRemWorklistTy Worklist = getWorklist(F);
// Process each entry in the worklist.
for (DivRemPairWorklistEntry &E : Worklist) {
bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
auto &DivInst = E.DivInst;
auto &RemInst = E.RemInst;
// If the target supports div+rem and the instructions are in the same block
// already, there's nothing to do. The backend should handle this. If the
// target does not support div+rem, then we will decompose the rem.
if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
continue;
bool DivDominates = DT.dominates(DivInst, RemInst);
if (!DivDominates && !DT.dominates(RemInst, DivInst))
continue;
if (!DebugCounter::shouldExecute(DRPCounter))
continue;
if (HasDivRemOp) {
// The target has a single div/rem operation. Hoist the lower instruction
// to make the matched pair visible to the backend.
if (DivDominates)
RemInst->moveAfter(DivInst);
else
DivInst->moveAfter(RemInst);
NumHoisted++;
} else {
// The target does not have a single div/rem operation. Decompose the
// remainder calculation as:
// X % Y --> X - ((X / Y) * Y).
Value *X = E.getDividend();
Value *Y = E.getDivisor();
Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
// If the remainder dominates, then hoist the division up to that block:
//
// bb1:
// %rem = srem %x, %y
// bb2:
// %div = sdiv %x, %y
// -->
// bb1:
// %div = sdiv %x, %y
// %mul = mul %div, %y
// %rem = sub %x, %mul
//
// If the division dominates, it's already in the right place. The mul+sub
// will be in a different block because we don't assume that they are
// cheap to speculatively execute:
//
// bb1:
// %div = sdiv %x, %y
// bb2:
// %rem = srem %x, %y
// -->
// bb1:
// %div = sdiv %x, %y
// bb2:
// %mul = mul %div, %y
// %rem = sub %x, %mul
//
// If the div and rem are in the same block, we do the same transform,
// but any code movement would be within the same block.
if (!DivDominates)
DivInst->moveBefore(RemInst);
Mul->insertAfter(RemInst);
Sub->insertAfter(Mul);
// Now kill the explicit remainder. We have replaced it with:
// (sub X, (mul (div X, Y), Y)
Sub->setName(RemInst->getName() + ".decomposed");
Instruction *OrigRemInst = RemInst;
// Update AssertingVH<> with new instruction so it doesn't assert.
RemInst = Sub;
// And replace the original instruction with the new one.
OrigRemInst->replaceAllUsesWith(Sub);
OrigRemInst->eraseFromParent();
NumDecomposed++;
}
Changed = true;
}
return Changed;
}
// Pass manager boilerplate below here.
namespace {
struct DivRemPairsLegacyPass : public FunctionPass {
static char ID;
DivRemPairsLegacyPass() : FunctionPass(ID) {
initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return optimizeDivRem(F, TTI, DT);
}
};
} // namespace
char DivRemPairsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
"Hoist/decompose integer division and remainder", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
"Hoist/decompose integer division and remainder", false,
false)
FunctionPass *llvm::createDivRemPairsPass() {
return new DivRemPairsLegacyPass();
}
PreservedAnalyses DivRemPairsPass::run(Function &F,
FunctionAnalysisManager &FAM) {
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
if (!optimizeDivRem(F, TTI, DT))
return PreservedAnalyses::all();
// TODO: This pass just hoists/replaces math ops - all analyses are preserved?
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
return PA;
}
|