1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
; RUN: opt -S < %s -instcombine | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-macosx10.7.0"
; Check transforms involving atomic operations
define i32 @test1(i32* %p) {
; CHECK-LABEL: define i32 @test1(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
define i32 @test2(i32* %p) {
; CHECK-LABEL: define i32 @test2(
; CHECK: %x = load volatile i32, i32* %p, align 4
; CHECK: %y = load volatile i32, i32* %p, align 4
%x = load volatile i32, i32* %p, align 4
%y = load volatile i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; The exact semantics of mixing volatile and non-volatile on the same
; memory location are a bit unclear, but conservatively, we know we don't
; want to remove the volatile.
define i32 @test3(i32* %p) {
; CHECK-LABEL: define i32 @test3(
; CHECK: %x = load volatile i32, i32* %p, align 4
%x = load volatile i32, i32* %p, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding from a stronger ordered atomic is fine
define i32 @test4(i32* %p) {
; CHECK-LABEL: define i32 @test4(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p unordered, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding from a non-atomic is not. (The earlier load
; could in priciple be promoted to atomic and then forwarded,
; but we can't just drop the atomic from the load.)
define i32 @test5(i32* %p) {
; CHECK-LABEL: define i32 @test5(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
%x = load atomic i32, i32* %p unordered, align 4
%y = load i32, i32* %p, align 4
%z = add i32 %x, %y
ret i32 %z
}
; Forwarding atomic to atomic is fine
define i32 @test6(i32* %p) {
; CHECK-LABEL: define i32 @test6(
; CHECK: %x = load atomic i32, i32* %p unordered, align 4
; CHECK: shl i32 %x, 1
%x = load atomic i32, i32* %p unordered, align 4
%y = load atomic i32, i32* %p unordered, align 4
%z = add i32 %x, %y
ret i32 %z
}
; FIXME: we currently don't do anything for monotonic
define i32 @test7(i32* %p) {
; CHECK-LABEL: define i32 @test7(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p monotonic, align 4
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p monotonic, align 4
%z = add i32 %x, %y
ret i32 %z
}
; FIXME: We could forward in racy code
define i32 @test8(i32* %p) {
; CHECK-LABEL: define i32 @test8(
; CHECK: %x = load atomic i32, i32* %p seq_cst, align 4
; CHECK: %y = load atomic i32, i32* %p acquire, align 4
%x = load atomic i32, i32* %p seq_cst, align 4
%y = load atomic i32, i32* %p acquire, align 4
%z = add i32 %x, %y
ret i32 %z
}
; An unordered access to null is still unreachable. There's no
; ordering imposed.
define i32 @test9() {
; CHECK-LABEL: define i32 @test9(
; CHECK: store i32 undef, i32* null
%x = load atomic i32, i32* null unordered, align 4
ret i32 %x
}
define i32 @test9_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test9_no_null_opt(
; CHECK: load atomic i32, i32* null unordered
%x = load atomic i32, i32* null unordered, align 4
ret i32 %x
}
; FIXME: Could also fold
define i32 @test10() {
; CHECK-LABEL: define i32 @test10(
; CHECK: load atomic i32, i32* null monotonic
%x = load atomic i32, i32* null monotonic, align 4
ret i32 %x
}
define i32 @test10_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test10_no_null_opt(
; CHECK: load atomic i32, i32* null monotonic
%x = load atomic i32, i32* null monotonic, align 4
ret i32 %x
}
; Would this be legal to fold? Probably?
define i32 @test11() {
; CHECK-LABEL: define i32 @test11(
; CHECK: load atomic i32, i32* null seq_cst
%x = load atomic i32, i32* null seq_cst, align 4
ret i32 %x
}
define i32 @test11_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test11_no_null_opt(
; CHECK: load atomic i32, i32* null seq_cst
%x = load atomic i32, i32* null seq_cst, align 4
ret i32 %x
}
; An unordered access to null is still unreachable. There's no
; ordering imposed.
define i32 @test12() {
; CHECK-LABEL: define i32 @test12(
; CHECK: store atomic i32 undef, i32* null
store atomic i32 0, i32* null unordered, align 4
ret i32 0
}
define i32 @test12_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test12_no_null_opt(
; CHECK: store atomic i32 0, i32* null unordered
store atomic i32 0, i32* null unordered, align 4
ret i32 0
}
; FIXME: Could also fold
define i32 @test13() {
; CHECK-LABEL: define i32 @test13(
; CHECK: store atomic i32 0, i32* null monotonic
store atomic i32 0, i32* null monotonic, align 4
ret i32 0
}
define i32 @test13_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test13_no_null_opt(
; CHECK: store atomic i32 0, i32* null monotonic
store atomic i32 0, i32* null monotonic, align 4
ret i32 0
}
; Would this be legal to fold? Probably?
define i32 @test14() {
; CHECK-LABEL: define i32 @test14(
; CHECK: store atomic i32 0, i32* null seq_cst
store atomic i32 0, i32* null seq_cst, align 4
ret i32 0
}
define i32 @test14_no_null_opt() #0 {
; CHECK-LABEL: define i32 @test14_no_null_opt(
; CHECK: store atomic i32 0, i32* null seq_cst
store atomic i32 0, i32* null seq_cst, align 4
ret i32 0
}
@a = external global i32
@b = external global i32
define i32 @test15(i1 %cnd) {
; CHECK-LABEL: define i32 @test15(
; CHECK: load atomic i32, i32* @a unordered, align 4
; CHECK: load atomic i32, i32* @b unordered, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr unordered, align 4
ret i32 %x
}
; FIXME: This would be legal to transform
define i32 @test16(i1 %cnd) {
; CHECK-LABEL: define i32 @test16(
; CHECK: load atomic i32, i32* %addr monotonic, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr monotonic, align 4
ret i32 %x
}
; FIXME: This would be legal to transform
define i32 @test17(i1 %cnd) {
; CHECK-LABEL: define i32 @test17(
; CHECK: load atomic i32, i32* %addr seq_cst, align 4
%addr = select i1 %cnd, i32* @a, i32* @b
%x = load atomic i32, i32* %addr seq_cst, align 4
ret i32 %x
}
define i32 @test22(i1 %cnd) {
; CHECK-LABEL: define i32 @test22(
; CHECK: [[PHI:%.*]] = phi i32
; CHECK: store atomic i32 [[PHI]], i32* @a unordered, align 4
br i1 %cnd, label %block1, label %block2
block1:
store atomic i32 1, i32* @a unordered, align 4
br label %merge
block2:
store atomic i32 2, i32* @a unordered, align 4
br label %merge
merge:
ret i32 0
}
; TODO: probably also legal here
define i32 @test23(i1 %cnd) {
; CHECK-LABEL: define i32 @test23(
; CHECK: br i1 %cnd, label %block1, label %block2
br i1 %cnd, label %block1, label %block2
block1:
store atomic i32 1, i32* @a monotonic, align 4
br label %merge
block2:
store atomic i32 2, i32* @a monotonic, align 4
br label %merge
merge:
ret i32 0
}
declare void @clobber()
define i32 @test18(float* %p) {
; CHECK-LABEL: define i32 @test18(
; CHECK: load atomic i32, i32* [[A:%.*]] unordered, align 4
; CHECK: store atomic i32 [[B:%.*]], i32* [[C:%.*]] unordered, align 4
%x = load atomic float, float* %p unordered, align 4
call void @clobber() ;; keep the load around
store atomic float %x, float* %p unordered, align 4
ret i32 0
}
; TODO: probably also legal in this case
define i32 @test19(float* %p) {
; CHECK-LABEL: define i32 @test19(
; CHECK: load atomic float, float* %p seq_cst, align 4
; CHECK: store atomic float %x, float* %p seq_cst, align 4
%x = load atomic float, float* %p seq_cst, align 4
call void @clobber() ;; keep the load around
store atomic float %x, float* %p seq_cst, align 4
ret i32 0
}
define i32 @test20(i32** %p, i8* %v) {
; CHECK-LABEL: define i32 @test20(
; CHECK: store atomic i8* %v, i8** [[D:%.*]] unordered, align 4
%cast = bitcast i8* %v to i32*
store atomic i32* %cast, i32** %p unordered, align 4
ret i32 0
}
define i32 @test21(i32** %p, i8* %v) {
; CHECK-LABEL: define i32 @test21(
; CHECK: store atomic i32* %cast, i32** %p monotonic, align 4
%cast = bitcast i8* %v to i32*
store atomic i32* %cast, i32** %p monotonic, align 4
ret i32 0
}
define void @pr27490a(i8** %p1, i8** %p2) {
; CHECK-LABEL: define void @pr27490
; CHECK: %1 = bitcast i8** %p1 to i64*
; CHECK: %l1 = load i64, i64* %1, align 8
; CHECK: %2 = bitcast i8** %p2 to i64*
; CHECK: store volatile i64 %l1, i64* %2, align 8
%l = load i8*, i8** %p1
store volatile i8* %l, i8** %p2
ret void
}
define void @pr27490b(i8** %p1, i8** %p2) {
; CHECK-LABEL: define void @pr27490
; CHECK: %1 = bitcast i8** %p1 to i64*
; CHECK: %l1 = load i64, i64* %1, align 8
; CHECK: %2 = bitcast i8** %p2 to i64*
; CHECK: store atomic i64 %l1, i64* %2 seq_cst, align 8
%l = load i8*, i8** %p1
store atomic i8* %l, i8** %p2 seq_cst, align 8
ret void
}
;; At the moment, we can't form atomic vectors by folding since these are
;; not representable in the IR. This was pr29121. The right long term
;; solution is to extend the IR to handle this case.
define <2 x float> @no_atomic_vector_load(i64* %p) {
; CHECK-LABEL @no_atomic_vector_load
; CHECK: load atomic i64, i64* %p unordered, align 8
%load = load atomic i64, i64* %p unordered, align 8
%.cast = bitcast i64 %load to <2 x float>
ret <2 x float> %.cast
}
define void @no_atomic_vector_store(<2 x float> %p, i8* %p2) {
; CHECK-LABEL: @no_atomic_vector_store
; CHECK: store atomic i64 %1, i64* %2 unordered, align 8
%1 = bitcast <2 x float> %p to i64
%2 = bitcast i8* %p2 to i64*
store atomic i64 %1, i64* %2 unordered, align 8
ret void
}
attributes #0 = { "null-pointer-is-valid"="true" }
|