1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
; RUN: opt -S -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 < %s 2>&1 | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
; Check that the vectorizer identifies the %p.09 phi,
; as an induction variable, despite the potential overflow
; due to the truncation from 32bit to 8bit.
; SCEV will detect the pattern "sext(trunc(%p.09)) + %step"
; and generate the required runtime checks under which
; we can assume no overflow. We check here that we generate
; exactly two runtime checks:
; 1) an overflow check:
; {0,+,(trunc i32 %step to i8)}<%for.body> Added Flags: <nssw>
; 2) an equality check verifying that the step of the induction
; is equal to sext(trunc(step)):
; Equal predicate: %step == (sext i8 (trunc i32 %step to i8) to i32)
;
; See also pr30654.
;
; int a[N];
; void doit1(int n, int step) {
; int i;
; char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; }
; }
;
; CHECK-LABEL: @doit1
; CHECK: vector.scevcheck
; CHECK: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK-NOT: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK: %[[TEST:[0-9]+]] = or i1 {{.*}}, %mul.overflow
; CHECK: %[[NTEST:[0-9]+]] = or i1 false, %[[TEST]]
; CHECK: %ident.check = icmp ne i32 {{.*}}, %{{.*}}
; CHECK: %{{.*}} = or i1 %[[NTEST]], %ident.check
; CHECK-NOT: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK: vector.body:
; CHECK: <4 x i32>
@a = common local_unnamed_addr global [250 x i32] zeroinitializer, align 16
; Function Attrs: norecurse nounwind uwtable
define void @doit1(i32 %n, i32 %step) local_unnamed_addr {
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.preheader, label %for.end
for.body.preheader:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%p.09 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ]
%sext = shl i32 %p.09, 24
%conv = ashr exact i32 %sext, 24
%arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %conv, i32* %arrayidx, align 4
%add = add nsw i32 %conv, %step
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
; Same as above, but for checking the SCEV "zext(trunc(%p.09)) + %step".
; Here we expect the following two predicates to be added for runtime checking:
; 1) {0,+,(trunc i32 %step to i8)}<%for.body> Added Flags: <nusw>
; 2) Equal predicate: %step == (sext i8 (trunc i32 %step to i8) to i32)
;
; int a[N];
; void doit2(int n, int step) {
; int i;
; unsigned char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; }
; }
;
; CHECK-LABEL: @doit2
; CHECK: vector.scevcheck
; CHECK: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK-NOT: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK: %[[TEST:[0-9]+]] = or i1 {{.*}}, %mul.overflow
; CHECK: %[[NTEST:[0-9]+]] = or i1 false, %[[TEST]]
; CHECK: %[[EXT:[0-9]+]] = sext i8 {{.*}} to i32
; CHECK: %ident.check = icmp ne i32 {{.*}}, %[[EXT]]
; CHECK: %{{.*}} = or i1 %[[NTEST]], %ident.check
; CHECK-NOT: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK: vector.body:
; CHECK: <4 x i32>
; Function Attrs: norecurse nounwind uwtable
define void @doit2(i32 %n, i32 %step) local_unnamed_addr {
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.preheader, label %for.end
for.body.preheader:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%p.09 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ]
%conv = and i32 %p.09, 255
%arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %conv, i32* %arrayidx, align 4
%add = add nsw i32 %conv, %step
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
; Here we check that the same phi scev analysis would fail
; to create the runtime checks because the step is not invariant.
; As a result vectorization will fail.
;
; int a[N];
; void doit3(int n, int step) {
; int i;
; char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; step += 2;
; }
; }
;
; CHECK-LABEL: @doit3
; CHECK-NOT: vector.scevcheck
; CHECK-NOT: vector.body:
; CHECK-LABEL: for.body:
; Function Attrs: norecurse nounwind uwtable
define void @doit3(i32 %n, i32 %step) local_unnamed_addr {
entry:
%cmp9 = icmp sgt i32 %n, 0
br i1 %cmp9, label %for.body.preheader, label %for.end
for.body.preheader:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%p.012 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ]
%step.addr.010 = phi i32 [ %add3, %for.body ], [ %step, %for.body.preheader ]
%sext = shl i32 %p.012, 24
%conv = ashr exact i32 %sext, 24
%arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %conv, i32* %arrayidx, align 4
%add = add nsw i32 %conv, %step.addr.010
%add3 = add nsw i32 %step.addr.010, 2
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
; Lastly, we also check the case where we can tell at compile time that
; the step of the induction is equal to sext(trunc(step)), in which case
; we don't have to check this equality at runtime (we only need the
; runtime overflow check). Therefore only the following overflow predicate
; will be added for runtime checking:
; {0,+,%cstep}<%for.body> Added Flags: <nssw>
;
; a[N];
; void doit4(int n, char cstep) {
; int i;
; char p = 0;
; int istep = cstep;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + istep;
; }
; }
; CHECK-LABEL: @doit4
; CHECK: vector.scevcheck
; CHECK: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK-NOT: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK: %{{.*}} = or i1 {{.*}}, %mul.overflow
; CHECK-NOT: %ident.check = icmp ne i32 {{.*}}, %{{.*}}
; CHECK-NOT: %{{.*}} = or i1 %{{.*}}, %ident.check
; CHECK-NOT: %mul = call { i8, i1 } @llvm.umul.with.overflow.i8(i8 {{.*}}, i8 {{.*}})
; CHECK: vector.body:
; CHECK: <4 x i32>
; Function Attrs: norecurse nounwind uwtable
define void @doit4(i32 %n, i8 signext %cstep) local_unnamed_addr {
entry:
%conv = sext i8 %cstep to i32
%cmp10 = icmp sgt i32 %n, 0
br i1 %cmp10, label %for.body.preheader, label %for.end
for.body.preheader:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%p.011 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ]
%sext = shl i32 %p.011, 24
%conv2 = ashr exact i32 %sext, 24
%arrayidx = getelementptr inbounds [250 x i32], [250 x i32]* @a, i64 0, i64 %indvars.iv
store i32 %conv2, i32* %arrayidx, align 4
%add = add nsw i32 %conv2, %conv
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
|