1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
//===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <array>
#include <string>
#include "Assembler.h"
#include "MCInstrDescView.h"
#include "SnippetGenerator.h"
#include "Target.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Program.h"
namespace llvm {
namespace exegesis {
std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) {
std::vector<CodeTemplate> Result;
Result.push_back(std::move(CT));
return Result;
}
SnippetGeneratorFailure::SnippetGeneratorFailure(const llvm::Twine &S)
: llvm::StringError(S, llvm::inconvertibleErrorCode()) {}
SnippetGenerator::SnippetGenerator(const LLVMState &State) : State(State) {}
SnippetGenerator::~SnippetGenerator() = default;
llvm::Expected<std::vector<BenchmarkCode>>
SnippetGenerator::generateConfigurations(const Instruction &Instr) const {
if (auto E = generateCodeTemplates(Instr)) {
const auto &RATC = State.getRATC();
std::vector<BenchmarkCode> Output;
for (CodeTemplate &CT : E.get()) {
const llvm::BitVector &ForbiddenRegs =
CT.ScratchSpacePointerInReg
? RATC.getRegister(CT.ScratchSpacePointerInReg).aliasedBits()
: RATC.emptyRegisters();
// TODO: Generate as many BenchmarkCode as needed.
{
BenchmarkCode BC;
BC.Info = CT.Info;
for (InstructionTemplate &IT : CT.Instructions) {
randomizeUnsetVariables(State.getExegesisTarget(), ForbiddenRegs, IT);
BC.Instructions.push_back(IT.build());
}
if (CT.ScratchSpacePointerInReg)
BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
BC.RegisterInitialValues =
computeRegisterInitialValues(CT.Instructions);
Output.push_back(std::move(BC));
}
}
return Output;
} else
return E.takeError();
}
std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
const std::vector<InstructionTemplate> &Instructions) const {
// Collect all register uses and create an assignment for each of them.
// Ignore memory operands which are handled separately.
// Loop invariant: DefinedRegs[i] is true iif it has been set at least once
// before the current instruction.
llvm::BitVector DefinedRegs = State.getRATC().emptyRegisters();
std::vector<RegisterValue> RIV;
for (const InstructionTemplate &IT : Instructions) {
// Returns the register that this Operand sets or uses, or 0 if this is not
// a register.
const auto GetOpReg = [&IT](const Operand &Op) -> unsigned {
if (Op.isMemory())
return 0;
if (Op.isImplicitReg())
return Op.getImplicitReg();
if (Op.isExplicit() && IT.getValueFor(Op).isReg())
return IT.getValueFor(Op).getReg();
return 0;
};
// Collect used registers that have never been def'ed.
for (const Operand &Op : IT.Instr.Operands) {
if (Op.isUse()) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0 && !DefinedRegs.test(Reg)) {
RIV.push_back(RegisterValue::zero(Reg));
DefinedRegs.set(Reg);
}
}
}
// Mark defs as having been def'ed.
for (const Operand &Op : IT.Instr.Operands) {
if (Op.isDef()) {
const unsigned Reg = GetOpReg(Op);
if (Reg > 0)
DefinedRegs.set(Reg);
}
}
}
return RIV;
}
llvm::Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(const Instruction &Instr) {
const AliasingConfigurations SelfAliasing(Instr, Instr);
if (SelfAliasing.empty())
return llvm::make_error<SnippetGeneratorFailure>("empty self aliasing");
std::vector<CodeTemplate> Result;
Result.emplace_back();
CodeTemplate &CT = Result.back();
InstructionTemplate IT(Instr);
if (SelfAliasing.hasImplicitAliasing()) {
CT.Info = "implicit Self cycles, picking random values.";
} else {
CT.Info = "explicit self cycles, selecting one aliasing Conf.";
// This is a self aliasing instruction so defs and uses are from the same
// instance, hence twice IT in the following call.
setRandomAliasing(SelfAliasing, IT, IT);
}
CT.Instructions.push_back(std::move(IT));
return std::move(Result);
}
llvm::Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const Instruction &Instr,
llvm::StringRef Msg) {
std::vector<CodeTemplate> Result;
Result.emplace_back();
CodeTemplate &CT = Result.back();
CT.Info = llvm::formatv("{0}, repeating an unconstrained assignment", Msg);
CT.Instructions.emplace_back(Instr);
return std::move(Result);
}
std::mt19937 &randomGenerator() {
static std::random_device RandomDevice;
static std::mt19937 RandomGenerator(RandomDevice());
return RandomGenerator;
}
size_t randomIndex(size_t Max) {
std::uniform_int_distribution<> Distribution(0, Max);
return Distribution(randomGenerator());
}
template <typename C>
static auto randomElement(const C &Container) -> decltype(Container[0]) {
assert(!Container.empty() &&
"Can't pick a random element from an empty container)");
return Container[randomIndex(Container.size() - 1)];
}
static void setRegisterOperandValue(const RegisterOperandAssignment &ROV,
InstructionTemplate &IB) {
assert(ROV.Op);
if (ROV.Op->isExplicit()) {
auto &AssignedValue = IB.getValueFor(*ROV.Op);
if (AssignedValue.isValid()) {
assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
return;
}
AssignedValue = llvm::MCOperand::createReg(ROV.Reg);
} else {
assert(ROV.Op->isImplicitReg());
assert(ROV.Reg == ROV.Op->getImplicitReg());
}
}
size_t randomBit(const llvm::BitVector &Vector) {
assert(Vector.any());
auto Itr = Vector.set_bits_begin();
for (size_t I = randomIndex(Vector.count() - 1); I != 0; --I)
++Itr;
return *Itr;
}
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
InstructionTemplate &DefIB, InstructionTemplate &UseIB) {
assert(!AliasingConfigurations.empty());
assert(!AliasingConfigurations.hasImplicitAliasing());
const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
setRegisterOperandValue(randomElement(RandomConf.Defs), DefIB);
setRegisterOperandValue(randomElement(RandomConf.Uses), UseIB);
}
void randomizeUnsetVariables(const ExegesisTarget &Target,
const llvm::BitVector &ForbiddenRegs,
InstructionTemplate &IT) {
for (const Variable &Var : IT.Instr.Variables) {
llvm::MCOperand &AssignedValue = IT.getValueFor(Var);
if (!AssignedValue.isValid())
Target.randomizeMCOperand(IT.Instr, Var, AssignedValue, ForbiddenRegs);
}
}
} // namespace exegesis
} // namespace llvm
|