File: Selection.cpp

package info (click to toggle)
llvm-toolchain-9 1%3A9.0.1-16
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 882,436 kB
  • sloc: cpp: 4,167,636; ansic: 714,256; asm: 457,610; python: 155,927; objc: 65,094; sh: 42,856; lisp: 26,908; perl: 7,786; pascal: 7,722; makefile: 6,881; ml: 5,581; awk: 3,648; cs: 2,027; xml: 888; javascript: 381; ruby: 156
file content (381 lines) | stat: -rw-r--r-- 15,188 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//===--- Selection.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Selection.h"
#include "ClangdUnit.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>

namespace clang {
namespace clangd {
namespace {
using Node = SelectionTree::Node;
using ast_type_traits::DynTypedNode;

// Stores a collection of (possibly-overlapping) integer ranges.
// When new ranges are added, hit-tests them against existing ones.
class RangeSet {
public:
  // Returns true if any new offsets are covered.
  // This is naive (linear in number of successful add() calls), but ok for now.
  bool add(unsigned Begin, unsigned End) {
    assert(std::is_sorted(Ranges.begin(), Ranges.end()));
    assert(Begin < End);

    if (covered(Begin, End))
      return false;
    auto Pair = std::make_pair(Begin, End);
    Ranges.insert(llvm::upper_bound(Ranges, Pair), Pair);
    return true;
  }

private:
  bool covered(unsigned Begin, unsigned End) {
    assert(Begin < End);
    for (const auto &R : Ranges) {
      if (Begin < R.first)
        return false; // The prefix [Begin, R.first) is not covered.
      if (Begin < R.second) {
        Begin = R.second; // Prefix is covered, truncate the range.
        if (Begin >= End)
          return true;
      }
    }
    return false;
  }

  std::vector<std::pair<unsigned, unsigned>> Ranges; // Always sorted.
};

// We find the selection by visiting written nodes in the AST, looking for nodes
// that intersect with the selected character range.
//
// While traversing, we maintain a parent stack. As nodes pop off the stack,
// we decide whether to keep them or not. To be kept, they must either be
// selected or contain some nodes that are.
//
// For simple cases (not inside macros) we prune subtrees that don't intersect.
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
public:
  // Runs the visitor to gather selected nodes and their ancestors.
  // If there is any selection, the root (TUDecl) is the first node.
  static std::deque<Node> collect(ASTContext &AST, unsigned Begin,
                                  unsigned End, FileID File) {
    SelectionVisitor V(AST, Begin, End, File);
    V.TraverseAST(AST);
    assert(V.Stack.size() == 1 && "Unpaired push/pop?");
    assert(V.Stack.top() == &V.Nodes.front());
    if (V.Nodes.size() == 1) // TUDecl, but no nodes under it.
      V.Nodes.clear();
    return std::move(V.Nodes);
  }

  // We traverse all "well-behaved" nodes the same way:
  //  - push the node onto the stack
  //  - traverse its children recursively
  //  - pop it from the stack
  //  - hit testing: is intersection(node, selection) - union(children) empty?
  //  - attach it to the tree if it or any children hit the selection
  //
  // Two categories of nodes are not "well-behaved":
  //  - those without source range information, we don't record those
  //  - those that can't be stored in DynTypedNode.
  // We're missing some interesting things like Attr due to the latter.
  bool TraverseDecl(Decl *X) {
    if (X && isa<TranslationUnitDecl>(X))
      return Base::TraverseDecl(X); // Already pushed by constructor.
    // Base::TraverseDecl will suppress children, but not this node itself.
    if (X && X->isImplicit())
      return true;
    return traverseNode(X, [&] { return Base::TraverseDecl(X); });
  }
  bool TraverseTypeLoc(TypeLoc X) {
    return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
  }
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
    return traverseNode(
        &X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
  }
  bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
    return traverseNode(
        X, [&] { return Base::TraverseConstructorInitializer(X); });
  }
  // Stmt is the same, but this form allows the data recursion optimization.
  bool dataTraverseStmtPre(Stmt *X) {
    if (!X || canSafelySkipNode(X->getSourceRange()))
      return false;
    push(DynTypedNode::create(*X));
    return true;
  }
  bool dataTraverseStmtPost(Stmt *X) {
    pop();
    return true;
  }
  // Uninteresting parts of the AST that don't have locations within them.
  bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
  bool TraverseType(QualType) { return true; }

private:
  using Base = RecursiveASTVisitor<SelectionVisitor>;

  SelectionVisitor(ASTContext &AST, unsigned SelBegin, unsigned SelEnd,
                   FileID SelFile)
      : SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
        SelBegin(SelBegin), SelEnd(SelEnd), SelFile(SelFile),
        SelBeginTokenStart(SM.getFileOffset(Lexer::GetBeginningOfToken(
            SM.getComposedLoc(SelFile, SelBegin), SM, LangOpts))) {
    // Ensure we have a node for the TU decl, regardless of traversal scope.
    Nodes.emplace_back();
    Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
    Nodes.back().Parent = nullptr;
    Nodes.back().Selected = SelectionTree::Unselected;
    Stack.push(&Nodes.back());
  }

  // Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
  // Node is always a pointer so the generic code can handle any null checks.
  template <typename T, typename Func>
  bool traverseNode(T *Node, const Func &Body) {
    if (Node == nullptr || canSafelySkipNode(Node->getSourceRange()))
      return true;
    push(DynTypedNode::create(*Node));
    bool Ret = Body();
    pop();
    return Ret;
  }

  // HIT TESTING
  //
  // We do rough hit testing on the way down the tree to avoid traversing
  // subtrees that don't touch the selection (canSafelySkipNode), but
  // fine-grained hit-testing is mostly done on the way back up (in pop()).
  // This means children get to claim parts of the selection first, and parents
  // are only selected if they own tokens that no child owned.
  //
  // Nodes *usually* nest nicely: a child's getSourceRange() lies within the
  // parent's, and a node (transitively) owns all tokens in its range.
  //
  // Exception 1: child range claims tokens that should be owned by the parent.
  //              e.g. in `void foo(int);`, the FunctionTypeLoc should own
  //              `void (int)` but the parent FunctionDecl should own `foo`.
  // To handle this case, certain nodes claim small token ranges *before*
  // their children are traversed. (see earlySourceRange).
  //
  // Exception 2: siblings both claim the same node.
  //              e.g. `int x, y;` produces two sibling VarDecls.
  //                    ~~~~~ x
  //                    ~~~~~~~~ y
  // Here the first ("leftmost") sibling claims the tokens it wants, and the
  // other sibling gets what's left. So selecting "int" only includes the left
  // VarDecl in the selection tree.

  // An optimization for a common case: nodes outside macro expansions that
  // don't intersect the selection may be recursively skipped.
  bool canSafelySkipNode(SourceRange S) {
    auto B = SM.getDecomposedLoc(S.getBegin());
    auto E = SM.getDecomposedLoc(S.getEnd());
    if (B.first != SelFile || E.first != SelFile)
      return false;
    return B.second >= SelEnd || E.second < SelBeginTokenStart;
  }

  // Pushes a node onto the ancestor stack. Pairs with pop().
  // Performs early hit detection for some nodes (on the earlySourceRange).
  void push(DynTypedNode Node) {
    bool SelectedEarly = claimRange(earlySourceRange(Node));
    Nodes.emplace_back();
    Nodes.back().ASTNode = std::move(Node);
    Nodes.back().Parent = Stack.top();
    // Early hit detection never selects the whole node.
    Nodes.back().Selected =
        SelectedEarly ? SelectionTree::Partial : SelectionTree::Unselected;
    Stack.push(&Nodes.back());
  }

  // Pops a node off the ancestor stack, and finalizes it. Pairs with push().
  // Performs primary hit detection.
  void pop() {
    Node &N = *Stack.top();
    if (auto Sel = claimRange(N.ASTNode.getSourceRange()))
      N.Selected = Sel;
    if (N.Selected || !N.Children.empty()) {
      // Attach to the tree.
      N.Parent->Children.push_back(&N);
    } else {
      // Neither N any children are selected, it doesn't belong in the tree.
      assert(&N == &Nodes.back());
      Nodes.pop_back();
    }
    Stack.pop();
  }

  // Returns the range of tokens that this node will claim directly, and
  // is not available to the node's children.
  // Usually empty, but sometimes children cover tokens but shouldn't own them.
  SourceRange earlySourceRange(const DynTypedNode &N) {
    if (const Decl *D = N.get<Decl>()) {
      // void [[foo]]();
      if (auto *FD = llvm::dyn_cast<FunctionDecl>(D))
        return FD->getNameInfo().getSourceRange();
      // int (*[[s]])();
      else if (auto *VD = llvm::dyn_cast<VarDecl>(D))
        return VD->getLocation();
    }
    return SourceRange();
  }

  // Perform hit-testing of a complete Node against the selection.
  // This runs for every node in the AST, and must be fast in common cases.
  // This is usually called from pop(), so we can take children into account.
  SelectionTree::Selection claimRange(SourceRange S) {
    if (!S.isValid())
      return SelectionTree::Unselected;
    // getTopMacroCallerLoc() allows selection of constructs in macro args. e.g:
    //   #define LOOP_FOREVER(Body) for(;;) { Body }
    //   void IncrementLots(int &x) {
    //     LOOP_FOREVER( ++x; )
    //   }
    // Selecting "++x" or "x" will do the right thing.
    auto B = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getBegin()));
    auto E = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getEnd()));
    // Otherwise, nodes in macro expansions can't be selected.
    if (B.first != SelFile || E.first != SelFile)
      return SelectionTree::Unselected;
    // Cheap test: is there any overlap at all between the selection and range?
    // Note that E.second is the *start* of the last token, which is why we
    // compare against the "rounded-down" SelBegin.
    if (B.second >= SelEnd || E.second < SelBeginTokenStart)
      return SelectionTree::Unselected;

    // We may have hit something, need some more precise checks.
    // Adjust [B, E) to be a half-open character range.
    E.second += Lexer::MeasureTokenLength(S.getEnd(), SM, LangOpts);
    auto PreciseBounds = std::make_pair(B.second, E.second);
    // Trim range using the selection, drop it if empty.
    B.second = std::max(B.second, SelBegin);
    E.second = std::min(E.second, SelEnd);
    if (B.second >= E.second)
      return SelectionTree::Unselected;
    // Attempt to claim the remaining range. If there's nothing to claim, only
    // children were selected.
    if (!Claimed.add(B.second, E.second))
      return SelectionTree::Unselected;
    // Some of our own characters are covered, this is a true hit.
    // Determine whether the node was completely covered.
    return (PreciseBounds.first >= SelBegin && PreciseBounds.second <= SelEnd)
               ? SelectionTree::Complete
               : SelectionTree::Partial;
  }

  SourceManager &SM;
  const LangOptions &LangOpts;
  std::stack<Node *> Stack;
  RangeSet Claimed;
  std::deque<Node> Nodes; // Stable pointers as we add more nodes.
  // Half-open selection range.
  unsigned SelBegin;
  unsigned SelEnd;
  FileID SelFile;
  // If the selection start slices a token in half, the beginning of that token.
  // This is useful for checking whether the end of a token range overlaps
  // the selection: range.end < SelBeginTokenStart is equivalent to
  // range.end + measureToken(range.end) < SelBegin (assuming range.end points
  // to a token), and it saves a lex every time.
  unsigned SelBeginTokenStart;
};

} // namespace

void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
                          int Indent) const {
  if (N.Selected)
    OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
                                                                    : '.');
  else
    OS.indent(Indent);
  if (const TypeLoc *TL = N.ASTNode.get<TypeLoc>()) {
    // TypeLoc is a hierarchy, but has only a single ASTNodeKind.
    // Synthesize the name from the Type subclass (except for QualifiedTypeLoc).
    if (TL->getTypeLocClass() == TypeLoc::Qualified)
      OS << "QualifiedTypeLoc";
    else
      OS << TL->getType()->getTypeClassName() << "TypeLoc";
  } else {
    OS << N.ASTNode.getNodeKind().asStringRef();
  }
  OS << " ";
  N.ASTNode.print(OS, PrintPolicy);
  OS << "\n";
  for (const Node *Child : N.Children)
    print(OS, *Child, Indent + 2);
}

// Decide which selection emulates a "point" query in between characters.
static std::pair<unsigned, unsigned> pointBounds(unsigned Offset, FileID FID,
                                                 ASTContext &AST) {
  StringRef Buf = AST.getSourceManager().getBufferData(FID);
  // Edge-cases where the choice is forced.
  if (Buf.size() == 0)
    return {0, 0};
  if (Offset == 0)
    return {0, 1};
  if (Offset == Buf.size())
    return {Offset - 1, Offset};
  // We could choose either this byte or the previous. Usually we prefer the
  // character on the right of the cursor (or under a block cursor).
  // But if that's whitespace, we likely want the token on the left.
  if (isWhitespace(Buf[Offset]) && !isWhitespace(Buf[Offset - 1]))
    return {Offset - 1, Offset};
  return {Offset, Offset + 1};
}

SelectionTree::SelectionTree(ASTContext &AST, unsigned Begin, unsigned End)
    : PrintPolicy(AST.getLangOpts()) {
  // No fundamental reason the selection needs to be in the main file,
  // but that's all clangd has needed so far.
  FileID FID = AST.getSourceManager().getMainFileID();
  if (Begin == End)
    std::tie(Begin, End) = pointBounds(Begin, FID, AST);
  PrintPolicy.TerseOutput = true;
  PrintPolicy.IncludeNewlines = false;

  Nodes = SelectionVisitor::collect(AST, Begin, End, FID);
  Root = Nodes.empty() ? nullptr : &Nodes.front();
}

SelectionTree::SelectionTree(ASTContext &AST, unsigned Offset)
    : SelectionTree(AST, Offset, Offset) {}

const Node *SelectionTree::commonAncestor() const {
  if (!Root)
    return nullptr;
  const Node *Ancestor = Root;
  while (Ancestor->Children.size() == 1 && !Ancestor->Selected)
    Ancestor = Ancestor->Children.front();
  return Ancestor;
}

const DeclContext& SelectionTree::Node::getDeclContext() const {
  for (const Node* CurrentNode = this; CurrentNode != nullptr;
       CurrentNode = CurrentNode->Parent) {
    if (const Decl* Current = CurrentNode->ASTNode.get<Decl>()) {
      if (CurrentNode != this)
        if (auto *DC = dyn_cast<DeclContext>(Current))
          return *DC;
      return *Current->getDeclContext();
    }
  }
  llvm_unreachable("A tree must always be rooted at TranslationUnitDecl.");
}

} // namespace clangd
} // namespace clang