| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 
 | //===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG
// Double Precision Multiply
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
#define C r5:4
#define CH r5
#define CL r4
#define BTMP r15:14
#define BTMPH r15
#define BTMPL r14
#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12
#define CTMP r11:10
#define CTMPH r11
#define CTMPL r10
#define PP_LL r9:8
#define PP_LL_H r9
#define PP_LL_L r8
#define PP_ODD r7:6
#define PP_ODD_H r7
#define PP_ODD_L r6
#define PP_HH r17:16
#define PP_HH_H r17
#define PP_HH_L r16
#define EXPA r18
#define EXPB r19
#define EXPBA r19:18
#define TMP r28
#define P_TMP p0
#define PROD_NEG p3
#define EXACT p2
#define SWAP p1
#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1023
#define STACKSPACE 32
#define ADJUST 4
#define FUDGE 7
#define FUDGE2 3
#ifndef SR_ROUND_OFF
#define SR_ROUND_OFF 22
#endif
	// First, classify for normal values, and abort if abnormal
	//
	// Next, unpack mantissa into 0x1000_0000_0000_0000 + mant<<8
	//
	// Since we know that the 2 MSBs of the H registers is zero, we should never carry
	// the partial products that involve the H registers
	//
	// Try to buy X slots, at the expense of latency if needed
	//
	// We will have PP_HH with the upper bits of the product, PP_LL with the lower
	// PP_HH can have a maximum of 0x03FF_FFFF_FFFF_FFFF or thereabouts
	// PP_HH can have a minimum of 0x0100_0000_0000_0000
	//
	// 0x0100_0000_0000_0000 has EXP of EXPA+EXPB-BIAS
	//
	// We need to align CTMP.
	// If CTMP >> PP, convert PP to 64 bit with sticky, align CTMP, and follow normal add
	// If CTMP << PP align CTMP and add 128 bits.  Then compute sticky
	// If CTMP ~= PP, align CTMP and add 128 bits.  May have massive cancellation.
	//
	// Convert partial product and CTMP to 2's complement prior to addition
	//
	// After we add, we need to normalize into upper 64 bits, then compute sticky.
	.text
	.global __hexagon_fmadf4
        .type __hexagon_fmadf4,@function
	.global __hexagon_fmadf5
        .type __hexagon_fmadf5,@function
	.global fma
	.type fma,@function
	Q6_ALIAS(fmadf5)
	.p2align 5
__hexagon_fmadf4:
__hexagon_fmadf5:
fma:
	{
		P_TMP = dfclass(A,#2)
		P_TMP = dfclass(B,#2)
		ATMP = #0
		BTMP = #0
	}
	{
		ATMP = insert(A,#MANTBITS,#EXPBITS-3)
		BTMP = insert(B,#MANTBITS,#EXPBITS-3)
		PP_ODD_H = ##0x10000000
		allocframe(#STACKSPACE)
	}
	{
		PP_LL = mpyu(ATMPL,BTMPL)
		if (!P_TMP) jump .Lfma_abnormal_ab
		ATMPH = or(ATMPH,PP_ODD_H)
		BTMPH = or(BTMPH,PP_ODD_H)
	}
	{
		P_TMP = dfclass(C,#2)
		if (!P_TMP.new) jump:nt .Lfma_abnormal_c
		CTMP = combine(PP_ODD_H,#0)
		PP_ODD = combine(#0,PP_LL_H)
	}
.Lfma_abnormal_c_restart:
	{
		PP_ODD += mpyu(BTMPL,ATMPH)
		CTMP = insert(C,#MANTBITS,#EXPBITS-3)
		memd(r29+#0) = PP_HH
		memd(r29+#8) = EXPBA
	}
	{
		PP_ODD += mpyu(ATMPL,BTMPH)
		EXPBA = neg(CTMP)
		P_TMP = cmp.gt(CH,#-1)
		TMP = xor(AH,BH)
	}
	{
		EXPA = extractu(AH,#EXPBITS,#HI_MANTBITS)
		EXPB = extractu(BH,#EXPBITS,#HI_MANTBITS)
		PP_HH = combine(#0,PP_ODD_H)
		if (!P_TMP) CTMP = EXPBA
	}
	{
		PP_HH += mpyu(ATMPH,BTMPH)
		PP_LL = combine(PP_ODD_L,PP_LL_L)
#undef PP_ODD
#undef PP_ODD_H
#undef PP_ODD_L
#undef ATMP
#undef ATMPL
#undef ATMPH
#undef BTMP
#undef BTMPL
#undef BTMPH
#define RIGHTLEFTSHIFT r13:12
#define RIGHTSHIFT r13
#define LEFTSHIFT r12
		EXPA = add(EXPA,EXPB)
#undef EXPB
#undef EXPBA
#define EXPC r19
#define EXPCA r19:18
		EXPC = extractu(CH,#EXPBITS,#HI_MANTBITS)
	}
	// PP_HH:PP_LL now has product
	// CTMP is negated
	// EXPA,B,C are extracted
	// We need to negate PP
	// Since we will be adding with carry later, if we need to negate,
	// just invert all bits now, which we can do conditionally and in parallel
#define PP_HH_TMP r15:14
#define PP_LL_TMP r7:6
	{
		EXPA = add(EXPA,#-BIAS+(ADJUST))
		PROD_NEG = !cmp.gt(TMP,#-1)
		PP_LL_TMP = #0
		PP_HH_TMP = #0
	}
	{
		PP_LL_TMP = sub(PP_LL_TMP,PP_LL,PROD_NEG):carry
		P_TMP = !cmp.gt(TMP,#-1)
		SWAP = cmp.gt(EXPC,EXPA)	// If C >> PP
		if (SWAP.new) EXPCA = combine(EXPA,EXPC)
	}
	{
		PP_HH_TMP = sub(PP_HH_TMP,PP_HH,PROD_NEG):carry
		if (P_TMP) PP_LL = PP_LL_TMP
#undef PP_LL_TMP
#define CTMP2 r7:6
#define CTMP2H r7
#define CTMP2L r6
		CTMP2 = #0
		EXPC = sub(EXPA,EXPC)
	}
	{
		if (P_TMP) PP_HH = PP_HH_TMP
		P_TMP = cmp.gt(EXPC,#63)
		if (SWAP) PP_LL = CTMP2
		if (SWAP) CTMP2 = PP_LL
	}
#undef PP_HH_TMP
//#define ONE r15:14
//#define S_ONE r14
#define ZERO r15:14
#define S_ZERO r15
#undef PROD_NEG
#define P_CARRY p3
	{
		if (SWAP) PP_HH = CTMP	// Swap C and PP
		if (SWAP) CTMP = PP_HH
		if (P_TMP) EXPC = add(EXPC,#-64)
		TMP = #63
	}
	{
		// If diff > 63, pre-shift-right by 64...
		if (P_TMP) CTMP2 = CTMP
		TMP = asr(CTMPH,#31)
		RIGHTSHIFT = min(EXPC,TMP)
		LEFTSHIFT = #0
	}
#undef C
#undef CH
#undef CL
#define STICKIES r5:4
#define STICKIESH r5
#define STICKIESL r4
	{
		if (P_TMP) CTMP = combine(TMP,TMP)	// sign extension of pre-shift-right-64
		STICKIES = extract(CTMP2,RIGHTLEFTSHIFT)
		CTMP2 = lsr(CTMP2,RIGHTSHIFT)
		LEFTSHIFT = sub(#64,RIGHTSHIFT)
	}
	{
		ZERO = #0
		TMP = #-2
		CTMP2 |= lsl(CTMP,LEFTSHIFT)
		CTMP = asr(CTMP,RIGHTSHIFT)
	}
	{
		P_CARRY = cmp.gtu(STICKIES,ZERO)	// If we have sticky bits from C shift
		if (P_CARRY.new) CTMP2L = and(CTMP2L,TMP) // make sure adding 1 == OR
#undef ZERO
#define ONE r15:14
#define S_ONE r14
		ONE = #1
		STICKIES = #0
	}
	{
		PP_LL = add(CTMP2,PP_LL,P_CARRY):carry	// use the carry to add the sticky
	}
	{
		PP_HH = add(CTMP,PP_HH,P_CARRY):carry
		TMP = #62
	}
	// PP_HH:PP_LL now holds the sum
	// We may need to normalize left, up to ??? bits.
	//
	// I think that if we have massive cancellation, the range we normalize by
	// is still limited
	{
		LEFTSHIFT = add(clb(PP_HH),#-2)
		if (!cmp.eq(LEFTSHIFT.new,TMP)) jump:t 1f	// all sign bits?
	}
	// We had all sign bits, shift left by 62.
	{
		CTMP = extractu(PP_LL,#62,#2)
		PP_LL = asl(PP_LL,#62)
		EXPA = add(EXPA,#-62)			// And adjust exponent of result
	}
	{
		PP_HH = insert(CTMP,#62,#0)		// Then shift 63
	}
	{
		LEFTSHIFT = add(clb(PP_HH),#-2)
	}
	.falign
1:
	{
		CTMP = asl(PP_HH,LEFTSHIFT)
		STICKIES |= asl(PP_LL,LEFTSHIFT)
		RIGHTSHIFT = sub(#64,LEFTSHIFT)
		EXPA = sub(EXPA,LEFTSHIFT)
	}
	{
		CTMP |= lsr(PP_LL,RIGHTSHIFT)
		EXACT = cmp.gtu(ONE,STICKIES)
		TMP = #BIAS+BIAS-2
	}
	{
		if (!EXACT) CTMPL = or(CTMPL,S_ONE)
		// If EXPA is overflow/underflow, jump to ovf_unf
		P_TMP = !cmp.gt(EXPA,TMP)
		P_TMP = cmp.gt(EXPA,#1)
		if (!P_TMP.new) jump:nt .Lfma_ovf_unf
	}
	{
		// XXX: FIXME: should PP_HH for check of zero be CTMP?
		P_TMP = cmp.gtu(ONE,CTMP)		// is result true zero?
		A = convert_d2df(CTMP)
		EXPA = add(EXPA,#-BIAS-60)
		PP_HH = memd(r29+#0)
	}
	{
		AH += asl(EXPA,#HI_MANTBITS)
		EXPCA = memd(r29+#8)
		if (!P_TMP) dealloc_return		// not zero, return
	}
.Ladd_yields_zero:
	// We had full cancellation.  Return +/- zero (-0 when round-down)
	{
		TMP = USR
		A = #0
	}
	{
		TMP = extractu(TMP,#2,#SR_ROUND_OFF)
		PP_HH = memd(r29+#0)
		EXPCA = memd(r29+#8)
	}
	{
		p0 = cmp.eq(TMP,#2)
		if (p0.new) AH = ##0x80000000
		dealloc_return
	}
#undef RIGHTLEFTSHIFT
#undef RIGHTSHIFT
#undef LEFTSHIFT
#undef CTMP2
#undef CTMP2H
#undef CTMP2L
.Lfma_ovf_unf:
	{
		p0 = cmp.gtu(ONE,CTMP)
		if (p0.new) jump:nt .Ladd_yields_zero
	}
	{
		A = convert_d2df(CTMP)
		EXPA = add(EXPA,#-BIAS-60)
		TMP = EXPA
	}
#define NEW_EXPB r7
#define NEW_EXPA r6
	{
		AH += asl(EXPA,#HI_MANTBITS)
		NEW_EXPB = extractu(AH,#EXPBITS,#HI_MANTBITS)
	}
	{
		NEW_EXPA = add(EXPA,NEW_EXPB)
		PP_HH = memd(r29+#0)
		EXPCA = memd(r29+#8)
#undef PP_HH
#undef PP_HH_H
#undef PP_HH_L
#undef EXPCA
#undef EXPC
#undef EXPA
#undef PP_LL
#undef PP_LL_H
#undef PP_LL_L
#define EXPA r6
#define EXPB r7
#define EXPBA r7:6
#define ATMP r9:8
#define ATMPH r9
#define ATMPL r8
#undef NEW_EXPB
#undef NEW_EXPA
		ATMP = abs(CTMP)
	}
	{
		p0 = cmp.gt(EXPA,##BIAS+BIAS)
		if (p0.new) jump:nt .Lfma_ovf
	}
	{
		p0 = cmp.gt(EXPA,#0)
		if (p0.new) jump:nt .Lpossible_unf
	}
	{
		// TMP has original EXPA.
		// ATMP is corresponding value
		// Normalize ATMP and shift right to correct location
		EXPB = add(clb(ATMP),#-2)		// Amount to left shift to normalize
		EXPA = sub(#1+5,TMP)			// Amount to right shift to denormalize
		p3 = cmp.gt(CTMPH,#-1)
	}
	// Underflow
	// We know that the infinte range exponent should be EXPA
	// CTMP is 2's complement, ATMP is abs(CTMP)
	{
		EXPA = add(EXPA,EXPB)		// how much to shift back right
		ATMP = asl(ATMP,EXPB)		// shift left
		AH = USR
		TMP = #63
	}
	{
		EXPB = min(EXPA,TMP)
		EXPA = #0
		AL = #0x0030
	}
	{
		B = extractu(ATMP,EXPBA)
		ATMP = asr(ATMP,EXPB)
	}
	{
		p0 = cmp.gtu(ONE,B)
		if (!p0.new) ATMPL = or(ATMPL,S_ONE)
		ATMPH = setbit(ATMPH,#HI_MANTBITS+FUDGE2)
	}
	{
		CTMP = neg(ATMP)
		p1 = bitsclr(ATMPL,#(1<<FUDGE2)-1)
		if (!p1.new) AH = or(AH,AL)
		B = #0
	}
	{
		if (p3) CTMP = ATMP
		USR = AH
		TMP = #-BIAS-(MANTBITS+FUDGE2)
	}
	{
		A = convert_d2df(CTMP)
	}
	{
		AH += asl(TMP,#HI_MANTBITS)
		dealloc_return
	}
.Lpossible_unf:
	{
		TMP = ##0x7fefffff
		ATMP = abs(CTMP)
	}
	{
		p0 = cmp.eq(AL,#0)
		p0 = bitsclr(AH,TMP)
		if (!p0.new) dealloc_return:t
		TMP = #0x7fff
	}
	{
		p0 = bitsset(ATMPH,TMP)
		BH = USR
		BL = #0x0030
	}
	{
		if (p0) BH = or(BH,BL)
	}
	{
		USR = BH
	}
	{
		p0 = dfcmp.eq(A,A)
		dealloc_return
	}
.Lfma_ovf:
	{
		TMP = USR
		CTMP = combine(##0x7fefffff,#-1)
		A = CTMP
	}
	{
		ATMP = combine(##0x7ff00000,#0)
		BH = extractu(TMP,#2,#SR_ROUND_OFF)
		TMP = or(TMP,#0x28)
	}
	{
		USR = TMP
		BH ^= lsr(AH,#31)
		BL = BH
	}
	{
		p0 = !cmp.eq(BL,#1)
		p0 = !cmp.eq(BH,#2)
	}
	{
		p0 = dfcmp.eq(ATMP,ATMP)
		if (p0.new) CTMP = ATMP
	}
	{
		A = insert(CTMP,#63,#0)
		dealloc_return
	}
#undef CTMP
#undef CTMPH
#undef CTMPL
#define BTMP r11:10
#define BTMPH r11
#define BTMPL r10
#undef STICKIES
#undef STICKIESH
#undef STICKIESL
#define C r5:4
#define CH r5
#define CL r4
.Lfma_abnormal_ab:
	{
		ATMP = extractu(A,#63,#0)
		BTMP = extractu(B,#63,#0)
		deallocframe
	}
	{
		p3 = cmp.gtu(ATMP,BTMP)
		if (!p3.new) A = B		// sort values
		if (!p3.new) B = A
	}
	{
		p0 = dfclass(A,#0x0f)		// A NaN?
		if (!p0.new) jump:nt .Lnan
		if (!p3) ATMP = BTMP
		if (!p3) BTMP = ATMP
	}
	{
		p1 = dfclass(A,#0x08)		// A is infinity
		p1 = dfclass(B,#0x0e)		// B is nonzero
	}
	{
		p0 = dfclass(A,#0x08)		// a is inf
		p0 = dfclass(B,#0x01)		// b is zero
	}
	{
		if (p1) jump .Lab_inf
		p2 = dfclass(B,#0x01)
	}
	{
		if (p0) jump .Linvalid
		if (p2) jump .Lab_true_zero
		TMP = ##0x7c000000
	}
	// We are left with a normal or subnormal times a subnormal, A > B
	// If A and B are both very small, we will go to a single sticky bit; replace
	// A and B lower 63 bits with 0x0010_0000_0000_0000, which yields equivalent results
	// if A and B might multiply to something bigger, decrease A exp and increase B exp
	// and start over
	{
		p0 = bitsclr(AH,TMP)
		if (p0.new) jump:nt .Lfma_ab_tiny
	}
	{
		TMP = add(clb(BTMP),#-EXPBITS)
	}
	{
		BTMP = asl(BTMP,TMP)
	}
	{
		B = insert(BTMP,#63,#0)
		AH -= asl(TMP,#HI_MANTBITS)
	}
	jump fma
.Lfma_ab_tiny:
	ATMP = combine(##0x00100000,#0)
	{
		A = insert(ATMP,#63,#0)
		B = insert(ATMP,#63,#0)
	}
	jump fma
.Lab_inf:
	{
		B = lsr(B,#63)
		p0 = dfclass(C,#0x10)
	}
	{
		A ^= asl(B,#63)
		if (p0) jump .Lnan
	}
	{
		p1 = dfclass(C,#0x08)
		if (p1.new) jump:nt .Lfma_inf_plus_inf
	}
	// A*B is +/- inf, C is finite.  Return A
	{
		jumpr r31
	}
	.falign
.Lfma_inf_plus_inf:
	{	// adding infinities of different signs is invalid
		p0 = dfcmp.eq(A,C)
		if (!p0.new) jump:nt .Linvalid
	}
	{
		jumpr r31
	}
.Lnan:
	{
		p0 = dfclass(B,#0x10)
		p1 = dfclass(C,#0x10)
		if (!p0.new) B = A
		if (!p1.new) C = A
	}
	{	// find sNaNs
		BH = convert_df2sf(B)
		BL = convert_df2sf(C)
	}
	{
		BH = convert_df2sf(A)
		A = #-1
		jumpr r31
	}
.Linvalid:
	{
		TMP = ##0x7f800001		// sp snan
	}
	{
		A = convert_sf2df(TMP)
		jumpr r31
	}
.Lab_true_zero:
	// B is zero, A is finite number
	{
		p0 = dfclass(C,#0x10)
		if (p0.new) jump:nt .Lnan
		if (p0.new) A = C
	}
	{
		p0 = dfcmp.eq(B,C)		// is C also zero?
		AH = lsr(AH,#31)		// get sign
	}
	{
		BH ^= asl(AH,#31)		// form correctly signed zero in B
		if (!p0) A = C			// If C is not zero, return C
		if (!p0) jumpr r31
	}
	// B has correctly signed zero, C is also zero
.Lzero_plus_zero:
	{
		p0 = cmp.eq(B,C)		// yes, scalar equals.  +0++0 or -0+-0
		if (p0.new) jumpr:t r31
		A = B
	}
	{
		TMP = USR
	}
	{
		TMP = extractu(TMP,#2,#SR_ROUND_OFF)
		A = #0
	}
	{
		p0 = cmp.eq(TMP,#2)
		if (p0.new) AH = ##0x80000000
		jumpr r31
	}
#undef BTMP
#undef BTMPH
#undef BTMPL
#define CTMP r11:10
	.falign
.Lfma_abnormal_c:
	// We know that AB is normal * normal
	// C is not normal: zero, subnormal, inf, or NaN.
	{
		p0 = dfclass(C,#0x10)		// is C NaN?
		if (p0.new) jump:nt .Lnan
		if (p0.new) A = C		// move NaN to A
		deallocframe
	}
	{
		p0 = dfclass(C,#0x08)		// is C inf?
		if (p0.new) A = C		// return C
		if (p0.new) jumpr:nt r31
	}
	// zero or subnormal
	// If we have a zero, and we know AB is normal*normal, we can just call normal multiply
	{
		p0 = dfclass(C,#0x01)		// is C zero?
		if (p0.new) jump:nt __hexagon_muldf3
		TMP = #1
	}
	// Left with: subnormal
	// Adjust C and jump back to restart
	{
		allocframe(#STACKSPACE)		// oops, deallocated above, re-allocate frame
		CTMP = #0
		CH = insert(TMP,#EXPBITS,#HI_MANTBITS)
		jump .Lfma_abnormal_c_restart
	}
END(fma)
 |