1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// A single header library providing an utility class to break up an array of
// bytes. Whenever run on the same input, provides the same output, as long as
// its methods are called in the same order, with the same arguments.
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
#define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cstring>
#include <initializer_list>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
class FuzzedDataProvider {
public:
// |data| is an array of length |size| that the FuzzedDataProvider wraps to
// provide more granular access. |data| must outlive the FuzzedDataProvider.
FuzzedDataProvider(const uint8_t *data, size_t size)
: data_ptr_(data), remaining_bytes_(size) {}
~FuzzedDataProvider() = default;
// Returns a std::vector containing |num_bytes| of input data. If fewer than
// |num_bytes| of data remain, returns a shorter std::vector containing all
// of the data that's left. Can be used with any byte sized type, such as
// char, unsigned char, uint8_t, etc.
template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes) {
num_bytes = std::min(num_bytes, remaining_bytes_);
return ConsumeBytes<T>(num_bytes, num_bytes);
}
// Similar to |ConsumeBytes|, but also appends the terminator value at the end
// of the resulting vector. Useful, when a mutable null-terminated C-string is
// needed, for example. But that is a rare case. Better avoid it, if possible,
// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
template <typename T>
std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes,
T terminator = 0) {
num_bytes = std::min(num_bytes, remaining_bytes_);
std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
result.back() = terminator;
return result;
}
// Returns a std::string containing |num_bytes| of input data. Using this and
// |.c_str()| on the resulting string is the best way to get an immutable
// null-terminated C string. If fewer than |num_bytes| of data remain, returns
// a shorter std::string containing all of the data that's left.
std::string ConsumeBytesAsString(size_t num_bytes) {
static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
"ConsumeBytesAsString cannot convert the data to a string.");
num_bytes = std::min(num_bytes, remaining_bytes_);
std::string result(
reinterpret_cast<const std::string::value_type *>(data_ptr_),
num_bytes);
Advance(num_bytes);
return result;
}
// Returns a number in the range [min, max] by consuming bytes from the
// input data. The value might not be uniformly distributed in the given
// range. If there's no input data left, always returns |min|. |min| must
// be less than or equal to |max|.
template <typename T> T ConsumeIntegralInRange(T min, T max) {
static_assert(std::is_integral<T>::value, "An integral type is required.");
static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
if (min > max)
abort();
// Use the biggest type possible to hold the range and the result.
uint64_t range = static_cast<uint64_t>(max) - min;
uint64_t result = 0;
size_t offset = 0;
while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
remaining_bytes_ != 0) {
// Pull bytes off the end of the seed data. Experimentally, this seems to
// allow the fuzzer to more easily explore the input space. This makes
// sense, since it works by modifying inputs that caused new code to run,
// and this data is often used to encode length of data read by
// |ConsumeBytes|. Separating out read lengths makes it easier modify the
// contents of the data that is actually read.
--remaining_bytes_;
result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
offset += CHAR_BIT;
}
// Avoid division by 0, in case |range + 1| results in overflow.
if (range != std::numeric_limits<decltype(range)>::max())
result = result % (range + 1);
return static_cast<T>(min + result);
}
// Returns a std::string of length from 0 to |max_length|. When it runs out of
// input data, returns what remains of the input. Designed to be more stable
// with respect to a fuzzer inserting characters than just picking a random
// length and then consuming that many bytes with |ConsumeBytes|.
std::string ConsumeRandomLengthString(size_t max_length) {
// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
// followed by anything else to the end of the string. As a result of this
// logic, a fuzzer can insert characters into the string, and the string
// will be lengthened to include those new characters, resulting in a more
// stable fuzzer than picking the length of a string independently from
// picking its contents.
std::string result;
// Reserve the anticipated capaticity to prevent several reallocations.
result.reserve(std::min(max_length, remaining_bytes_));
for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next == '\\' && remaining_bytes_ != 0) {
next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next != '\\')
break;
}
result += next;
}
result.shrink_to_fit();
return result;
}
// Returns a std::vector containing all remaining bytes of the input data.
template <typename T> std::vector<T> ConsumeRemainingBytes() {
return ConsumeBytes<T>(remaining_bytes_);
}
// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
// object.
// Returns a std::vector containing all remaining bytes of the input data.
std::string ConsumeRemainingBytesAsString() {
return ConsumeBytesAsString(remaining_bytes_);
}
// Returns a number in the range [Type's min, Type's max]. The value might
// not be uniformly distributed in the given range. If there's no input data
// left, always returns |min|.
template <typename T> T ConsumeIntegral() {
return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
}
// Reads one byte and returns a bool, or false when no data remains.
bool ConsumeBool() { return 1 & ConsumeIntegral<uint8_t>(); }
// Returns a copy of a value selected from a fixed-size |array|.
template <typename T, size_t size>
T PickValueInArray(const T (&array)[size]) {
static_assert(size > 0, "The array must be non empty.");
return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
}
template <typename T>
T PickValueInArray(std::initializer_list<const T> list) {
// static_assert(list.size() > 0, "The array must be non empty.");
return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
}
// Return an enum value. The enum must start at 0 and be contiguous. It must
// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
template <typename T> T ConsumeEnum() {
static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
return static_cast<T>(ConsumeIntegralInRange<uint32_t>(
0, static_cast<uint32_t>(T::kMaxValue)));
}
// Reports the remaining bytes available for fuzzed input.
size_t remaining_bytes() { return remaining_bytes_; }
private:
FuzzedDataProvider(const FuzzedDataProvider &) = delete;
FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
void Advance(size_t num_bytes) {
if (num_bytes > remaining_bytes_)
abort();
data_ptr_ += num_bytes;
remaining_bytes_ -= num_bytes;
}
template <typename T>
std::vector<T> ConsumeBytes(size_t size, size_t num_bytes_to_consume) {
static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
// The point of using the size-based constructor below is to increase the
// odds of having a vector object with capacity being equal to the length.
// That part is always implementation specific, but at least both libc++ and
// libstdc++ allocate the requested number of bytes in that constructor,
// which seems to be a natural choice for other implementations as well.
// To increase the odds even more, we also call |shrink_to_fit| below.
std::vector<T> result(size);
std::memcpy(result.data(), data_ptr_, num_bytes_to_consume);
Advance(num_bytes_to_consume);
// Even though |shrink_to_fit| is also implementation specific, we expect it
// to provide an additional assurance in case vector's constructor allocated
// a buffer which is larger than the actual amount of data we put inside it.
result.shrink_to_fit();
return result;
}
template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value) {
static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
static_assert(!std::numeric_limits<TU>::is_signed,
"Source type must be unsigned.");
// TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
if (std::numeric_limits<TS>::is_modulo)
return static_cast<TS>(value);
// Avoid using implementation-defined unsigned to signer conversions.
// To learn more, see https://stackoverflow.com/questions/13150449.
if (value <= std::numeric_limits<TS>::max())
return static_cast<TS>(value);
else {
constexpr auto TS_min = std::numeric_limits<TS>::min();
return TS_min + static_cast<char>(value - TS_min);
}
}
const uint8_t *data_ptr_;
size_t remaining_bytes_;
};
#endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
|