1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
//===-- combined_test.cc ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "allocator_config.h"
#include "combined.h"
#include "gtest/gtest.h"
#include <condition_variable>
#include <mutex>
#include <thread>
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready = false;
static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;
// This allows us to turn on the Quarantine for specific tests. The Quarantine
// parameters are on the low end, to avoid having to loop excessively in some
// tests.
static bool UseQuarantine = false;
extern "C" const char *__scudo_default_options() {
if (!UseQuarantine)
return "";
return "quarantine_size_kb=256:thread_local_quarantine_size_kb=128:"
"quarantine_max_chunk_size=1024";
}
template <class Config> static void testAllocator() {
using AllocatorT = scudo::Allocator<Config>;
auto Deleter = [](AllocatorT *A) {
A->unmapTestOnly();
delete A;
};
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
Deleter);
Allocator->reset();
constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
// This allocates and deallocates a bunch of chunks, with a wide range of
// sizes and alignments, with a focus on sizes that could trigger weird
// behaviors (plus or minus a small delta of a power of two for example).
for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
continue;
const scudo::uptr Size = (1U << SizeLog) + Delta;
void *P = Allocator->allocate(Size, Origin, Align);
EXPECT_NE(P, nullptr);
EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
EXPECT_LE(Size, Allocator->getUsableSize(P));
memset(P, 0xaa, Size);
Allocator->deallocate(P, Origin, Size);
}
}
}
Allocator->releaseToOS();
// Verify that a chunk will end up being reused, at some point.
const scudo::uptr NeedleSize = 1024U;
void *NeedleP = Allocator->allocate(NeedleSize, Origin);
Allocator->deallocate(NeedleP, Origin);
bool Found = false;
for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
void *P = Allocator->allocate(NeedleSize, Origin);
if (P == NeedleP)
Found = true;
Allocator->deallocate(P, Origin);
}
EXPECT_TRUE(Found);
constexpr scudo::uptr MaxSize = Config::Primary::SizeClassMap::MaxSize;
// Reallocate a large chunk all the way down to a byte, verifying that we
// preserve the data in the process.
scudo::uptr Size = MaxSize * 2;
const scudo::uptr DataSize = 2048U;
void *P = Allocator->allocate(Size, Origin);
const char Marker = 0xab;
memset(P, Marker, scudo::Min(Size, DataSize));
while (Size > 1U) {
Size /= 2U;
void *NewP = Allocator->reallocate(P, Size);
EXPECT_NE(NewP, nullptr);
for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
P = NewP;
}
Allocator->deallocate(P, Origin);
// Allocates a bunch of chunks, then iterate over all the chunks, ensuring
// they are the ones we allocated. This requires the allocator to not have any
// other allocated chunk at this point (eg: won't work with the Quarantine).
if (!UseQuarantine) {
std::vector<void *> V;
for (scudo::uptr I = 0; I < 64U; I++)
V.push_back(Allocator->allocate(rand() % (MaxSize / 2U), Origin));
Allocator->disable();
Allocator->iterateOverChunks(
0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
[](uintptr_t Base, size_t Size, void *Arg) {
std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
void *P = reinterpret_cast<void *>(Base);
EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
},
reinterpret_cast<void *>(&V));
Allocator->enable();
while (!V.empty()) {
Allocator->deallocate(V.back(), Origin);
V.pop_back();
}
}
Allocator->releaseToOS();
Allocator->printStats();
}
TEST(ScudoCombinedTest, BasicCombined) {
testAllocator<scudo::DefaultConfig>();
#if SCUDO_WORDSIZE == 64U
testAllocator<scudo::FuchsiaConfig>();
#endif
// The following configs should work on all platforms.
UseQuarantine = true;
testAllocator<scudo::AndroidConfig>();
UseQuarantine = false;
testAllocator<scudo::AndroidSvelteConfig>();
}
template <typename AllocatorT> static void stressAllocator(AllocatorT *A) {
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
std::vector<std::pair<void *, scudo::uptr>> V;
for (scudo::uptr I = 0; I < 256U; I++) {
const scudo::uptr Size = std::rand() % 4096U;
void *P = A->allocate(Size, Origin);
// A region could have ran out of memory, resulting in a null P.
if (P)
V.push_back(std::make_pair(P, Size));
}
while (!V.empty()) {
auto Pair = V.back();
A->deallocate(Pair.first, Origin, Pair.second);
V.pop_back();
}
}
template <class Config> static void testAllocatorThreaded() {
using AllocatorT = scudo::Allocator<Config>;
auto Deleter = [](AllocatorT *A) {
A->unmapTestOnly();
delete A;
};
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
Deleter);
Allocator->reset();
std::thread Threads[32];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread(stressAllocator<AllocatorT>, Allocator.get());
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
Allocator->releaseToOS();
}
TEST(ScudoCombinedTest, ThreadedCombined) {
testAllocatorThreaded<scudo::DefaultConfig>();
#if SCUDO_WORDSIZE == 64U
testAllocatorThreaded<scudo::FuchsiaConfig>();
#endif
UseQuarantine = true;
testAllocatorThreaded<scudo::AndroidConfig>();
UseQuarantine = false;
testAllocatorThreaded<scudo::AndroidSvelteConfig>();
}
struct DeathConfig {
// Tiny allocator, its Primary only serves chunks of 1024 bytes.
using DeathSizeClassMap = scudo::SizeClassMap<1U, 10U, 10U, 10U, 1U, 10U>;
typedef scudo::SizeClassAllocator32<DeathSizeClassMap, 18U> Primary;
template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U>;
};
TEST(ScudoCombinedTest, DeathCombined) {
using AllocatorT = scudo::Allocator<DeathConfig>;
auto Deleter = [](AllocatorT *A) {
A->unmapTestOnly();
delete A;
};
std::unique_ptr<AllocatorT, decltype(Deleter)> Allocator(new AllocatorT,
Deleter);
Allocator->reset();
const scudo::uptr Size = 1000U;
void *P = Allocator->allocate(Size, Origin);
EXPECT_NE(P, nullptr);
// Invalid sized deallocation.
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");
// Misaligned pointer.
void *MisalignedP =
reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");
// Header corruption.
scudo::u64 *H =
reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
*H ^= 0x42U;
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
*H ^= 0x420042U;
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
*H ^= 0x420000U;
// Invalid chunk state.
Allocator->deallocate(P, Origin, Size);
EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
EXPECT_DEATH(Allocator->getUsableSize(P), "");
}
|