1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
//===-- secondary_test.cc ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "secondary.h"
#include "gtest/gtest.h"
#include <stdio.h>
#include <condition_variable>
#include <mutex>
#include <thread>
TEST(ScudoSecondaryTest, SecondaryBasic) {
scudo::GlobalStats S;
S.init();
scudo::MapAllocator *L = new scudo::MapAllocator;
L->init(&S);
const scudo::uptr Size = 1U << 16;
void *P = L->allocate(Size);
EXPECT_NE(P, nullptr);
memset(P, 'A', Size);
EXPECT_GE(scudo::MapAllocator::getBlockSize(P), Size);
L->deallocate(P);
EXPECT_DEATH(memset(P, 'A', Size), "");
const scudo::uptr Align = 1U << 16;
P = L->allocate(Size + Align, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 'A', Size);
L->deallocate(P);
std::vector<void *> V;
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate(Size));
std::random_shuffle(V.begin(), V.end());
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
L->printStats();
}
// This exercises a variety of combinations of size and alignment for the
// MapAllocator. The size computation done here mimic the ones done by the
// combined allocator.
TEST(ScudoSecondaryTest, SecondaryCombinations) {
constexpr scudo::uptr MinAlign = FIRST_32_SECOND_64(8, 16);
constexpr scudo::uptr HeaderSize = scudo::roundUpTo(8, MinAlign);
scudo::MapAllocator *L = new scudo::MapAllocator;
L->init(nullptr);
for (scudo::uptr SizeLog = 0; SizeLog <= 20; SizeLog++) {
for (scudo::uptr AlignLog = FIRST_32_SECOND_64(3, 4); AlignLog <= 16;
AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -128; Delta <= 128; Delta += 8) {
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
continue;
const scudo::uptr UserSize =
scudo::roundUpTo((1U << SizeLog) + Delta, MinAlign);
const scudo::uptr Size =
HeaderSize + UserSize + (Align > MinAlign ? Align - HeaderSize : 0);
void *P = L->allocate(Size, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 0xff, UserSize);
L->deallocate(P);
}
}
}
L->printStats();
}
TEST(ScudoSecondaryTest, SecondaryIterate) {
scudo::MapAllocator *L = new scudo::MapAllocator;
L->init(nullptr);
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate((std::rand() % 16) * PageSize));
auto Lambda = [V](scudo::uptr Block) {
EXPECT_NE(std::find(V.begin(), V.end(), reinterpret_cast<void *>(Block)),
V.end());
};
L->disable();
L->iterateOverBlocks(Lambda);
L->enable();
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
L->printStats();
}
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready = false;
static void performAllocations(scudo::MapAllocator *L) {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate((std::rand() % 16) * PageSize));
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
}
TEST(ScudoSecondaryTest, SecondaryThreadsRace) {
scudo::MapAllocator *L = new scudo::MapAllocator;
L->init(nullptr);
std::thread Threads[10];
for (scudo::uptr I = 0; I < 10U; I++)
Threads[I] = std::thread(performAllocations, L);
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
L->printStats();
}
|