1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
//===- PPCBoolRetToInt.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting i1 values to i32/i64 if they could be more
// profitably allocated as GPRs rather than CRs. This pass will become totally
// unnecessary if Register Bank Allocation and Global Instruction Selection ever
// go upstream.
//
// Presently, the pass converts i1 Constants, and Arguments to i32/i64 if the
// transitive closure of their uses includes only PHINodes, CallInsts, and
// ReturnInsts. The rational is that arguments are generally passed and returned
// in GPRs rather than CRs, so casting them to i32/i64 at the LLVM IR level will
// actually save casts at the Machine Instruction level.
//
// It might be useful to expand this pass to add bit-wise operations to the list
// of safe transitive closure types. Also, we miss some opportunities when LLVM
// represents logical AND and OR operations with control flow rather than data
// flow. For example by lowering the expression: return (A && B && C)
//
// as: return A ? true : B && C.
//
// There's code in SimplifyCFG that code be used to turn control flow in data
// flow using SelectInsts. Selects are slow on some architectures (P7/P8), so
// this probably isn't good in general, but for the special case of i1, the
// Selects could be further lowered to bit operations that are fast everywhere.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Casting.h"
#include <cassert>
using namespace llvm;
namespace {
#define DEBUG_TYPE "bool-ret-to-int"
STATISTIC(NumBoolRetPromotion,
"Number of times a bool feeding a RetInst was promoted to an int");
STATISTIC(NumBoolCallPromotion,
"Number of times a bool feeding a CallInst was promoted to an int");
STATISTIC(NumBoolToIntPromotion,
"Total number of times a bool was promoted to an int");
class PPCBoolRetToInt : public FunctionPass {
static SmallPtrSet<Value *, 8> findAllDefs(Value *V) {
SmallPtrSet<Value *, 8> Defs;
SmallVector<Value *, 8> WorkList;
WorkList.push_back(V);
Defs.insert(V);
while (!WorkList.empty()) {
Value *Curr = WorkList.back();
WorkList.pop_back();
auto *CurrUser = dyn_cast<User>(Curr);
// Operands of CallInst are skipped because they may not be Bool type,
// and their positions are defined by ABI.
if (CurrUser && !isa<CallInst>(Curr))
for (auto &Op : CurrUser->operands())
if (Defs.insert(Op).second)
WorkList.push_back(Op);
}
return Defs;
}
// Translate a i1 value to an equivalent i32/i64 value:
Value *translate(Value *V) {
Type *IntTy = ST->isPPC64() ? Type::getInt64Ty(V->getContext())
: Type::getInt32Ty(V->getContext());
if (auto *C = dyn_cast<Constant>(V))
return ConstantExpr::getZExt(C, IntTy);
if (auto *P = dyn_cast<PHINode>(V)) {
// Temporarily set the operands to 0. We'll fix this later in
// runOnUse.
Value *Zero = Constant::getNullValue(IntTy);
PHINode *Q =
PHINode::Create(IntTy, P->getNumIncomingValues(), P->getName(), P);
for (unsigned i = 0; i < P->getNumOperands(); ++i)
Q->addIncoming(Zero, P->getIncomingBlock(i));
return Q;
}
auto *A = dyn_cast<Argument>(V);
auto *I = dyn_cast<Instruction>(V);
assert((A || I) && "Unknown value type");
auto InstPt =
A ? &*A->getParent()->getEntryBlock().begin() : I->getNextNode();
return new ZExtInst(V, IntTy, "", InstPt);
}
typedef SmallPtrSet<const PHINode *, 8> PHINodeSet;
// A PHINode is Promotable if:
// 1. Its type is i1 AND
// 2. All of its uses are ReturnInt, CallInst, PHINode, or DbgInfoIntrinsic
// AND
// 3. All of its operands are Constant or Argument or
// CallInst or PHINode AND
// 4. All of its PHINode uses are Promotable AND
// 5. All of its PHINode operands are Promotable
static PHINodeSet getPromotablePHINodes(const Function &F) {
PHINodeSet Promotable;
// Condition 1
for (auto &BB : F)
for (auto &I : BB)
if (const auto *P = dyn_cast<PHINode>(&I))
if (P->getType()->isIntegerTy(1))
Promotable.insert(P);
SmallVector<const PHINode *, 8> ToRemove;
for (const PHINode *P : Promotable) {
// Condition 2 and 3
auto IsValidUser = [] (const Value *V) -> bool {
return isa<ReturnInst>(V) || isa<CallInst>(V) || isa<PHINode>(V) ||
isa<DbgInfoIntrinsic>(V);
};
auto IsValidOperand = [] (const Value *V) -> bool {
return isa<Constant>(V) || isa<Argument>(V) || isa<CallInst>(V) ||
isa<PHINode>(V);
};
const auto &Users = P->users();
const auto &Operands = P->operands();
if (!llvm::all_of(Users, IsValidUser) ||
!llvm::all_of(Operands, IsValidOperand))
ToRemove.push_back(P);
}
// Iterate to convergence
auto IsPromotable = [&Promotable] (const Value *V) -> bool {
const auto *Phi = dyn_cast<PHINode>(V);
return !Phi || Promotable.count(Phi);
};
while (!ToRemove.empty()) {
for (auto &User : ToRemove)
Promotable.erase(User);
ToRemove.clear();
for (const PHINode *P : Promotable) {
// Condition 4 and 5
const auto &Users = P->users();
const auto &Operands = P->operands();
if (!llvm::all_of(Users, IsPromotable) ||
!llvm::all_of(Operands, IsPromotable))
ToRemove.push_back(P);
}
}
return Promotable;
}
typedef DenseMap<Value *, Value *> B2IMap;
public:
static char ID;
PPCBoolRetToInt() : FunctionPass(ID) {
initializePPCBoolRetToIntPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
auto &TM = TPC->getTM<PPCTargetMachine>();
ST = TM.getSubtargetImpl(F);
PHINodeSet PromotablePHINodes = getPromotablePHINodes(F);
B2IMap Bool2IntMap;
bool Changed = false;
for (auto &BB : F) {
for (auto &I : BB) {
if (auto *R = dyn_cast<ReturnInst>(&I))
if (F.getReturnType()->isIntegerTy(1))
Changed |=
runOnUse(R->getOperandUse(0), PromotablePHINodes, Bool2IntMap);
if (auto *CI = dyn_cast<CallInst>(&I))
for (auto &U : CI->operands())
if (U->getType()->isIntegerTy(1))
Changed |= runOnUse(U, PromotablePHINodes, Bool2IntMap);
}
}
return Changed;
}
bool runOnUse(Use &U, const PHINodeSet &PromotablePHINodes,
B2IMap &BoolToIntMap) {
auto Defs = findAllDefs(U);
// If the values are all Constants or Arguments, don't bother
if (llvm::none_of(Defs, isa<Instruction, Value *>))
return false;
// Presently, we only know how to handle PHINode, Constant, Arguments and
// CallInst. Potentially, bitwise operations (AND, OR, XOR, NOT) and sign
// extension could also be handled in the future.
for (Value *V : Defs)
if (!isa<PHINode>(V) && !isa<Constant>(V) &&
!isa<Argument>(V) && !isa<CallInst>(V))
return false;
for (Value *V : Defs)
if (const auto *P = dyn_cast<PHINode>(V))
if (!PromotablePHINodes.count(P))
return false;
if (isa<ReturnInst>(U.getUser()))
++NumBoolRetPromotion;
if (isa<CallInst>(U.getUser()))
++NumBoolCallPromotion;
++NumBoolToIntPromotion;
for (Value *V : Defs)
if (!BoolToIntMap.count(V))
BoolToIntMap[V] = translate(V);
// Replace the operands of the translated instructions. They were set to
// zero in the translate function.
for (auto &Pair : BoolToIntMap) {
auto *First = dyn_cast<User>(Pair.first);
auto *Second = dyn_cast<User>(Pair.second);
assert((!First || Second) && "translated from user to non-user!?");
// Operands of CallInst are skipped because they may not be Bool type,
// and their positions are defined by ABI.
if (First && !isa<CallInst>(First))
for (unsigned i = 0; i < First->getNumOperands(); ++i)
Second->setOperand(i, BoolToIntMap[First->getOperand(i)]);
}
Value *IntRetVal = BoolToIntMap[U];
Type *Int1Ty = Type::getInt1Ty(U->getContext());
auto *I = cast<Instruction>(U.getUser());
Value *BackToBool = new TruncInst(IntRetVal, Int1Ty, "backToBool", I);
U.set(BackToBool);
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<DominatorTreeWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
private:
const PPCSubtarget *ST;
};
} // end anonymous namespace
char PPCBoolRetToInt::ID = 0;
INITIALIZE_PASS(PPCBoolRetToInt, "bool-ret-to-int",
"Convert i1 constants to i32/i64 if they are returned",
false, false)
FunctionPass *llvm::createPPCBoolRetToIntPass() { return new PPCBoolRetToInt(); }
|