1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
//===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass mutates the form of VSX FMA instructions to avoid unnecessary
// copies.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Temporarily disable FMA mutation by default, since it doesn't handle
// cross-basic-block intervals well.
// See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
// http://reviews.llvm.org/D17087
static cl::opt<bool> DisableVSXFMAMutate(
"disable-ppc-vsx-fma-mutation",
cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
cl::Hidden);
#define DEBUG_TYPE "ppc-vsx-fma-mutate"
namespace llvm { namespace PPC {
int getAltVSXFMAOpcode(uint16_t Opcode);
} }
namespace {
// PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
// (Altivec and scalar floating-point registers), we need to transform the
// copies into subregister copies with other restrictions.
struct PPCVSXFMAMutate : public MachineFunctionPass {
static char ID;
PPCVSXFMAMutate() : MachineFunctionPass(ID) {
initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
}
LiveIntervals *LIS;
const PPCInstrInfo *TII;
protected:
bool processBlock(MachineBasicBlock &MBB) {
bool Changed = false;
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
I != IE; ++I) {
MachineInstr &MI = *I;
// The default (A-type) VSX FMA form kills the addend (it is taken from
// the target register, which is then updated to reflect the result of
// the FMA). If the instruction, however, kills one of the registers
// used for the product, then we can use the M-form instruction (which
// will take that value from the to-be-defined register).
int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
if (AltOpc == -1)
continue;
// This pass is run after register coalescing, and so we're looking for
// a situation like this:
// ...
// %5 = COPY %9; VSLRC:%5,%9
// %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
// implicit %rm; VSLRC:%5,%17,%16
// ...
// %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
// implicit %rm; VSLRC:%9,%17,%19
// ...
// Where we can eliminate the copy by changing from the A-type to the
// M-type instruction. Specifically, for this example, this means:
// %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
// implicit %rm; VSLRC:%5,%17,%16
// is replaced by:
// %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
// implicit %rm; VSLRC:%16,%18,%9
// and we remove: %5 = COPY %9; VSLRC:%5,%9
SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
VNInfo *AddendValNo =
LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
// This can be null if the register is undef.
if (!AddendValNo)
continue;
MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
// The addend and this instruction must be in the same block.
if (!AddendMI || AddendMI->getParent() != MI.getParent())
continue;
// The addend must be a full copy within the same register class.
if (!AddendMI->isFullCopy())
continue;
unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
MRI.getRegClass(AddendSrcReg))
continue;
} else {
// If AddendSrcReg is a physical register, make sure the destination
// register class contains it.
if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
->contains(AddendSrcReg))
continue;
}
// In theory, there could be other uses of the addend copy before this
// fma. We could deal with this, but that would require additional
// logic below and I suspect it will not occur in any relevant
// situations. Additionally, check whether the copy source is killed
// prior to the fma. In order to replace the addend here with the
// source of the copy, it must still be live here. We can't use
// interval testing for a physical register, so as long as we're
// walking the MIs we may as well test liveness here.
//
// FIXME: There is a case that occurs in practice, like this:
// %9 = COPY %f1; VSSRC:%9
// ...
// %6 = COPY %9; VSSRC:%6,%9
// %7 = COPY %9; VSSRC:%7,%9
// %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
// %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
// %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
// which prevents an otherwise-profitable transformation.
bool OtherUsers = false, KillsAddendSrc = false;
for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
J != JE; --J) {
if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
OtherUsers = true;
break;
}
if (J->modifiesRegister(AddendSrcReg, TRI) ||
J->killsRegister(AddendSrcReg, TRI)) {
KillsAddendSrc = true;
break;
}
}
if (OtherUsers || KillsAddendSrc)
continue;
// The transformation doesn't work well with things like:
// %5 = A-form-op %5, %11, %5;
// unless %11 is also a kill, so skip when it is not,
// and check operand 3 to see it is also a kill to handle the case:
// %5 = A-form-op %5, %5, %11;
// where %5 and %11 are both kills. This case would be skipped
// otherwise.
unsigned OldFMAReg = MI.getOperand(0).getReg();
// Find one of the product operands that is killed by this instruction.
unsigned KilledProdOp = 0, OtherProdOp = 0;
unsigned Reg2 = MI.getOperand(2).getReg();
unsigned Reg3 = MI.getOperand(3).getReg();
if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
&& Reg2 != OldFMAReg) {
KilledProdOp = 2;
OtherProdOp = 3;
} else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
&& Reg3 != OldFMAReg) {
KilledProdOp = 3;
OtherProdOp = 2;
}
// If there are no usable killed product operands, then this
// transformation is likely not profitable.
if (!KilledProdOp)
continue;
// If the addend copy is used only by this MI, then the addend source
// register is likely not live here. This could be fixed (based on the
// legality checks above, the live range for the addend source register
// could be extended), but it seems likely that such a trivial copy can
// be coalesced away later, and thus is not worth the effort.
if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) &&
!LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
continue;
// Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
unsigned KilledProdReg = MI.getOperand(KilledProdOp).getReg();
unsigned OtherProdReg = MI.getOperand(OtherProdOp).getReg();
unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
bool AddRegKill = AddendMI->getOperand(1).isKill();
bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
bool AddRegUndef = AddendMI->getOperand(1).isUndef();
bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
// If there isn't a class that fits, we can't perform the transform.
// This is needed for correctness with a mixture of VSX and Altivec
// instructions to make sure that a low VSX register is not assigned to
// the Altivec instruction.
if (!MRI.constrainRegClass(KilledProdReg,
MRI.getRegClass(OldFMAReg)))
continue;
assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
"Addend copy not tied to old FMA output!");
LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI);
MI.getOperand(0).setReg(KilledProdReg);
MI.getOperand(1).setReg(KilledProdReg);
MI.getOperand(3).setReg(AddendSrcReg);
MI.getOperand(0).setSubReg(KilledProdSubReg);
MI.getOperand(1).setSubReg(KilledProdSubReg);
MI.getOperand(3).setSubReg(AddSubReg);
MI.getOperand(1).setIsKill(KilledProdRegKill);
MI.getOperand(3).setIsKill(AddRegKill);
MI.getOperand(1).setIsUndef(KilledProdRegUndef);
MI.getOperand(3).setIsUndef(AddRegUndef);
MI.setDesc(TII->get(AltOpc));
// If the addend is also a multiplicand, replace it with the addend
// source in both places.
if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
MI.getOperand(2).setReg(AddendSrcReg);
MI.getOperand(2).setSubReg(AddSubReg);
MI.getOperand(2).setIsKill(AddRegKill);
MI.getOperand(2).setIsUndef(AddRegUndef);
} else {
MI.getOperand(2).setReg(OtherProdReg);
MI.getOperand(2).setSubReg(OtherProdSubReg);
MI.getOperand(2).setIsKill(OtherProdRegKill);
MI.getOperand(2).setIsUndef(OtherProdRegUndef);
}
LLVM_DEBUG(dbgs() << " -> " << MI);
// The killed product operand was killed here, so we can reuse it now
// for the result of the fma.
LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
UI != UE;) {
MachineOperand &UseMO = *UI;
MachineInstr *UseMI = UseMO.getParent();
++UI;
// Don't replace the result register of the copy we're about to erase.
if (UseMI == AddendMI)
continue;
UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
}
// Extend the live intervals of the killed product operand to hold the
// fma result.
LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
AI != AE; ++AI) {
// Don't add the segment that corresponds to the original copy.
if (AI->valno == AddendValNo)
continue;
VNInfo *NewFMAValNo =
NewFMAInt.getNextValue(AI->start,
LIS->getVNInfoAllocator());
NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
NewFMAValNo));
}
LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
// Extend the live interval of the addend source (it might end at the
// copy to be removed, or somewhere in between there and here). This
// is necessary only if it is a physical register.
if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg))
for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
++Units) {
unsigned Unit = *Units;
LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
FMAIdx.getRegSlot());
LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n');
}
FMAInt.removeValNo(FMAValNo);
LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
// Remove the (now unused) copy.
LLVM_DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
LIS->RemoveMachineInstrFromMaps(*AddendMI);
AddendMI->eraseFromParent();
Changed = true;
}
return Changed;
}
public:
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
// If we don't have VSX then go ahead and return without doing
// anything.
const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
if (!STI.hasVSX())
return false;
LIS = &getAnalysis<LiveIntervals>();
TII = STI.getInstrInfo();
bool Changed = false;
if (DisableVSXFMAMutate)
return Changed;
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
MachineBasicBlock &B = *I++;
if (processBlock(B))
Changed = true;
}
return Changed;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
"PowerPC VSX FMA Mutation", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
"PowerPC VSX FMA Mutation", false, false)
char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
char PPCVSXFMAMutate::ID = 0;
FunctionPass *llvm::createPPCVSXFMAMutatePass() {
return new PPCVSXFMAMutate();
}
|