1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//===-- SystemZTDC.cpp - Utilize Test Data Class instruction --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for instructions that can be replaced by a Test Data Class
// instruction, and replaces them when profitable.
//
// Roughly, the following rules are recognized:
//
// 1: fcmp pred X, 0 -> tdc X, mask
// 2: fcmp pred X, +-inf -> tdc X, mask
// 3: fcmp pred X, +-minnorm -> tdc X, mask
// 4: tdc (fabs X), mask -> tdc X, newmask
// 5: icmp slt (bitcast float X to int), 0 -> tdc X, mask [ie. signbit]
// 6: icmp sgt (bitcast float X to int), -1 -> tdc X, mask
// 7: icmp ne/eq (call @llvm.s390.tdc.*(X, mask)) -> tdc X, mask/~mask
// 8: and i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 & M2)
// 9: or i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 | M2)
// 10: xor i1 (tdc X, M1), (tdc X, M2) -> tdc X, (M1 ^ M2)
//
// The pass works in 4 steps:
//
// 1. All fcmp and icmp instructions in a function are checked for a match
// with rules 1-3 and 5-7. Their TDC equivalents are stored in
// the ConvertedInsts mapping. If the operand of a fcmp instruction is
// a fabs, it's also folded according to rule 4.
// 2. All and/or/xor i1 instructions whose both operands have been already
// mapped are mapped according to rules 8-10. LogicOpsWorklist is used
// as a queue of instructions to check.
// 3. All mapped instructions that are considered worthy of conversion (ie.
// replacing them will actually simplify the final code) are replaced
// with a call to the s390.tdc intrinsic.
// 4. All intermediate results of replaced instructions are removed if unused.
//
// Instructions that match rules 1-3 are considered unworthy of conversion
// on their own (since a comparison instruction is superior), but are mapped
// in the hopes of folding the result using rules 4 and 8-10 (likely removing
// the original comparison in the process).
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include <deque>
#include <set>
using namespace llvm;
namespace llvm {
void initializeSystemZTDCPassPass(PassRegistry&);
}
namespace {
class SystemZTDCPass : public FunctionPass {
public:
static char ID;
SystemZTDCPass() : FunctionPass(ID) {
initializeSystemZTDCPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
// Maps seen instructions that can be mapped to a TDC, values are
// (TDC operand, TDC mask, worthy flag) triples.
MapVector<Instruction *, std::tuple<Value *, int, bool>> ConvertedInsts;
// The queue of and/or/xor i1 instructions to be potentially folded.
std::vector<BinaryOperator *> LogicOpsWorklist;
// Instructions matched while folding, to be removed at the end if unused.
std::set<Instruction *> PossibleJunk;
// Tries to convert a fcmp instruction.
void convertFCmp(CmpInst &I);
// Tries to convert an icmp instruction.
void convertICmp(CmpInst &I);
// Tries to convert an i1 and/or/xor instruction, whose both operands
// have been already converted.
void convertLogicOp(BinaryOperator &I);
// Marks an instruction as converted - adds it to ConvertedInsts and adds
// any and/or/xor i1 users to the queue.
void converted(Instruction *I, Value *V, int Mask, bool Worthy) {
ConvertedInsts[I] = std::make_tuple(V, Mask, Worthy);
auto &M = *I->getFunction()->getParent();
auto &Ctx = M.getContext();
for (auto *U : I->users()) {
auto *LI = dyn_cast<BinaryOperator>(U);
if (LI && LI->getType() == Type::getInt1Ty(Ctx) &&
(LI->getOpcode() == Instruction::And ||
LI->getOpcode() == Instruction::Or ||
LI->getOpcode() == Instruction::Xor)) {
LogicOpsWorklist.push_back(LI);
}
}
}
};
} // end anonymous namespace
char SystemZTDCPass::ID = 0;
INITIALIZE_PASS(SystemZTDCPass, "systemz-tdc",
"SystemZ Test Data Class optimization", false, false)
FunctionPass *llvm::createSystemZTDCPass() {
return new SystemZTDCPass();
}
void SystemZTDCPass::convertFCmp(CmpInst &I) {
Value *Op0 = I.getOperand(0);
auto *Const = dyn_cast<ConstantFP>(I.getOperand(1));
auto Pred = I.getPredicate();
// Only comparisons with consts are interesting.
if (!Const)
return;
// Compute the smallest normal number (and its negation).
auto &Sem = Op0->getType()->getFltSemantics();
APFloat Smallest = APFloat::getSmallestNormalized(Sem);
APFloat NegSmallest = Smallest;
NegSmallest.changeSign();
// Check if Const is one of our recognized consts.
int WhichConst;
if (Const->isZero()) {
// All comparisons with 0 can be converted.
WhichConst = 0;
} else if (Const->isInfinity()) {
// Likewise for infinities.
WhichConst = Const->isNegative() ? 2 : 1;
} else if (Const->isExactlyValue(Smallest)) {
// For Smallest, we cannot do EQ separately from GT.
if ((Pred & CmpInst::FCMP_OGE) != CmpInst::FCMP_OGE &&
(Pred & CmpInst::FCMP_OGE) != 0)
return;
WhichConst = 3;
} else if (Const->isExactlyValue(NegSmallest)) {
// Likewise for NegSmallest, we cannot do EQ separately from LT.
if ((Pred & CmpInst::FCMP_OLE) != CmpInst::FCMP_OLE &&
(Pred & CmpInst::FCMP_OLE) != 0)
return;
WhichConst = 4;
} else {
// Not one of our special constants.
return;
}
// Partial masks to use for EQ, GT, LT, UN comparisons, respectively.
static const int Masks[][4] = {
{ // 0
SystemZ::TDCMASK_ZERO, // eq
SystemZ::TDCMASK_POSITIVE, // gt
SystemZ::TDCMASK_NEGATIVE, // lt
SystemZ::TDCMASK_NAN, // un
},
{ // inf
SystemZ::TDCMASK_INFINITY_PLUS, // eq
0, // gt
(SystemZ::TDCMASK_ZERO |
SystemZ::TDCMASK_NEGATIVE |
SystemZ::TDCMASK_NORMAL_PLUS |
SystemZ::TDCMASK_SUBNORMAL_PLUS), // lt
SystemZ::TDCMASK_NAN, // un
},
{ // -inf
SystemZ::TDCMASK_INFINITY_MINUS, // eq
(SystemZ::TDCMASK_ZERO |
SystemZ::TDCMASK_POSITIVE |
SystemZ::TDCMASK_NORMAL_MINUS |
SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt
0, // lt
SystemZ::TDCMASK_NAN, // un
},
{ // minnorm
0, // eq (unsupported)
(SystemZ::TDCMASK_NORMAL_PLUS |
SystemZ::TDCMASK_INFINITY_PLUS), // gt (actually ge)
(SystemZ::TDCMASK_ZERO |
SystemZ::TDCMASK_NEGATIVE |
SystemZ::TDCMASK_SUBNORMAL_PLUS), // lt
SystemZ::TDCMASK_NAN, // un
},
{ // -minnorm
0, // eq (unsupported)
(SystemZ::TDCMASK_ZERO |
SystemZ::TDCMASK_POSITIVE |
SystemZ::TDCMASK_SUBNORMAL_MINUS), // gt
(SystemZ::TDCMASK_NORMAL_MINUS |
SystemZ::TDCMASK_INFINITY_MINUS), // lt (actually le)
SystemZ::TDCMASK_NAN, // un
}
};
// Construct the mask as a combination of the partial masks.
int Mask = 0;
if (Pred & CmpInst::FCMP_OEQ)
Mask |= Masks[WhichConst][0];
if (Pred & CmpInst::FCMP_OGT)
Mask |= Masks[WhichConst][1];
if (Pred & CmpInst::FCMP_OLT)
Mask |= Masks[WhichConst][2];
if (Pred & CmpInst::FCMP_UNO)
Mask |= Masks[WhichConst][3];
// A lone fcmp is unworthy of tdc conversion on its own, but may become
// worthy if combined with fabs.
bool Worthy = false;
if (CallInst *CI = dyn_cast<CallInst>(Op0)) {
Function *F = CI->getCalledFunction();
if (F && F->getIntrinsicID() == Intrinsic::fabs) {
// Fold with fabs - adjust the mask appropriately.
Mask &= SystemZ::TDCMASK_PLUS;
Mask |= Mask >> 1;
Op0 = CI->getArgOperand(0);
// A combination of fcmp with fabs is a win, unless the constant
// involved is 0 (which is handled by later passes).
Worthy = WhichConst != 0;
PossibleJunk.insert(CI);
}
}
converted(&I, Op0, Mask, Worthy);
}
void SystemZTDCPass::convertICmp(CmpInst &I) {
Value *Op0 = I.getOperand(0);
auto *Const = dyn_cast<ConstantInt>(I.getOperand(1));
auto Pred = I.getPredicate();
// All our icmp rules involve comparisons with consts.
if (!Const)
return;
if (auto *Cast = dyn_cast<BitCastInst>(Op0)) {
// Check for icmp+bitcast used for signbit.
if (!Cast->getSrcTy()->isFloatTy() &&
!Cast->getSrcTy()->isDoubleTy() &&
!Cast->getSrcTy()->isFP128Ty())
return;
Value *V = Cast->getOperand(0);
int Mask;
if (Pred == CmpInst::ICMP_SLT && Const->isZero()) {
// icmp slt (bitcast X), 0 - set if sign bit true
Mask = SystemZ::TDCMASK_MINUS;
} else if (Pred == CmpInst::ICMP_SGT && Const->isMinusOne()) {
// icmp sgt (bitcast X), -1 - set if sign bit false
Mask = SystemZ::TDCMASK_PLUS;
} else {
// Not a sign bit check.
return;
}
PossibleJunk.insert(Cast);
converted(&I, V, Mask, true);
} else if (auto *CI = dyn_cast<CallInst>(Op0)) {
// Check if this is a pre-existing call of our tdc intrinsic.
Function *F = CI->getCalledFunction();
if (!F || F->getIntrinsicID() != Intrinsic::s390_tdc)
return;
if (!Const->isZero())
return;
Value *V = CI->getArgOperand(0);
auto *MaskC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
// Bail if the mask is not a constant.
if (!MaskC)
return;
int Mask = MaskC->getZExtValue();
Mask &= SystemZ::TDCMASK_ALL;
if (Pred == CmpInst::ICMP_NE) {
// icmp ne (call llvm.s390.tdc(...)), 0 -> simple TDC
} else if (Pred == CmpInst::ICMP_EQ) {
// icmp eq (call llvm.s390.tdc(...)), 0 -> TDC with inverted mask
Mask ^= SystemZ::TDCMASK_ALL;
} else {
// An unknown comparison - ignore.
return;
}
PossibleJunk.insert(CI);
converted(&I, V, Mask, false);
}
}
void SystemZTDCPass::convertLogicOp(BinaryOperator &I) {
Value *Op0, *Op1;
int Mask0, Mask1;
bool Worthy0, Worthy1;
std::tie(Op0, Mask0, Worthy0) = ConvertedInsts[cast<Instruction>(I.getOperand(0))];
std::tie(Op1, Mask1, Worthy1) = ConvertedInsts[cast<Instruction>(I.getOperand(1))];
if (Op0 != Op1)
return;
int Mask;
switch (I.getOpcode()) {
case Instruction::And:
Mask = Mask0 & Mask1;
break;
case Instruction::Or:
Mask = Mask0 | Mask1;
break;
case Instruction::Xor:
Mask = Mask0 ^ Mask1;
break;
default:
llvm_unreachable("Unknown op in convertLogicOp");
}
converted(&I, Op0, Mask, true);
}
bool SystemZTDCPass::runOnFunction(Function &F) {
ConvertedInsts.clear();
LogicOpsWorklist.clear();
PossibleJunk.clear();
// Look for icmp+fcmp instructions.
for (auto &I : instructions(F)) {
if (I.getOpcode() == Instruction::FCmp)
convertFCmp(cast<CmpInst>(I));
else if (I.getOpcode() == Instruction::ICmp)
convertICmp(cast<CmpInst>(I));
}
// If none found, bail already.
if (ConvertedInsts.empty())
return false;
// Process the queue of logic instructions.
while (!LogicOpsWorklist.empty()) {
BinaryOperator *Op = LogicOpsWorklist.back();
LogicOpsWorklist.pop_back();
// If both operands mapped, and the instruction itself not yet mapped,
// convert it.
if (ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(0))) &&
ConvertedInsts.count(dyn_cast<Instruction>(Op->getOperand(1))) &&
!ConvertedInsts.count(Op))
convertLogicOp(*Op);
}
// Time to actually replace the instructions. Do it in the reverse order
// of finding them, since there's a good chance the earlier ones will be
// unused (due to being folded into later ones).
Module &M = *F.getParent();
auto &Ctx = M.getContext();
Value *Zero32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
bool MadeChange = false;
for (auto &It : reverse(ConvertedInsts)) {
Instruction *I = It.first;
Value *V;
int Mask;
bool Worthy;
std::tie(V, Mask, Worthy) = It.second;
if (!I->user_empty()) {
// If used and unworthy of conversion, skip it.
if (!Worthy)
continue;
// Call the intrinsic, compare result with 0.
Function *TDCFunc =
Intrinsic::getDeclaration(&M, Intrinsic::s390_tdc, V->getType());
IRBuilder<> IRB(I);
Value *MaskVal = ConstantInt::get(Type::getInt64Ty(Ctx), Mask);
Instruction *TDC = IRB.CreateCall(TDCFunc, {V, MaskVal});
Value *ICmp = IRB.CreateICmp(CmpInst::ICMP_NE, TDC, Zero32);
I->replaceAllUsesWith(ICmp);
}
// If unused, or used and converted, remove it.
I->eraseFromParent();
MadeChange = true;
}
if (!MadeChange)
return false;
// We've actually done something - now clear misc accumulated junk (fabs,
// bitcast).
for (auto *I : PossibleJunk)
if (I->user_empty())
I->eraseFromParent();
return true;
}
|