1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
|
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/PrintCallHelper.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Casting.h"
#include <optional>
using namespace mlir;
using namespace mlir::vector;
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
const LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
assert(rank > 0 && "0-D vector corner case should have been handled already");
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = LLVM::ConstantOp::create(
rewriter, loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return LLVM::InsertElementOp::create(rewriter, loc, llvmType, val1, val2,
constant);
}
return LLVM::InsertValueOp::create(rewriter, loc, val1, val2, pos);
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
const LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank <= 1) {
auto idxType = rewriter.getIndexType();
auto constant = LLVM::ConstantOp::create(
rewriter, loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return LLVM::ExtractElementOp::create(rewriter, loc, llvmType, val,
constant);
}
return LLVM::ExtractValueOp::create(rewriter, loc, val, pos);
}
// Helper that returns data layout alignment of a vector.
LogicalResult getVectorAlignment(const LLVMTypeConverter &typeConverter,
VectorType vectorType, unsigned &align) {
Type convertedVectorTy = typeConverter.convertType(vectorType);
if (!convertedVectorTy)
return failure();
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(convertedVectorTy,
typeConverter.getDataLayout());
return success();
}
// Helper that returns data layout alignment of a memref.
LogicalResult getMemRefAlignment(const LLVMTypeConverter &typeConverter,
MemRefType memrefType, unsigned &align) {
Type elementTy = typeConverter.convertType(memrefType.getElementType());
if (!elementTy)
return failure();
// TODO: this should use the MLIR data layout when it becomes available and
// stop depending on translation.
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(elementTy, typeConverter.getDataLayout());
return success();
}
// Helper to resolve the alignment for vector load/store, gather and scatter
// ops. If useVectorAlignment is true, get the preferred alignment for the
// vector type in the operation. This option is used for hardware backends with
// vectorization. Otherwise, use the preferred alignment of the element type of
// the memref. Note that if you choose to use vector alignment, the shape of the
// vector type must be resolved before the ConvertVectorToLLVM pass is run.
LogicalResult getVectorToLLVMAlignment(const LLVMTypeConverter &typeConverter,
VectorType vectorType,
MemRefType memrefType, unsigned &align,
bool useVectorAlignment) {
if (useVectorAlignment) {
if (failed(getVectorAlignment(typeConverter, vectorType, align))) {
return failure();
}
} else {
if (failed(getMemRefAlignment(typeConverter, memrefType, align))) {
return failure();
}
}
return success();
}
// Check if the last stride is non-unit and has a valid memory space.
static LogicalResult isMemRefTypeSupported(MemRefType memRefType,
const LLVMTypeConverter &converter) {
if (!memRefType.isLastDimUnitStride())
return failure();
if (failed(converter.getMemRefAddressSpace(memRefType)))
return failure();
return success();
}
// Add an index vector component to a base pointer.
static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc,
const LLVMTypeConverter &typeConverter,
MemRefType memRefType, Value llvmMemref, Value base,
Value index, VectorType vectorType) {
assert(succeeded(isMemRefTypeSupported(memRefType, typeConverter)) &&
"unsupported memref type");
assert(vectorType.getRank() == 1 && "expected a 1-d vector type");
auto pType = MemRefDescriptor(llvmMemref).getElementPtrType();
auto ptrsType =
LLVM::getVectorType(pType, vectorType.getDimSize(0),
/*isScalable=*/vectorType.getScalableDims()[0]);
return LLVM::GEPOp::create(
rewriter, loc, ptrsType,
typeConverter.convertType(memRefType.getElementType()), base, index);
}
/// Convert `foldResult` into a Value. Integer attribute is converted to
/// an LLVM constant op.
static Value getAsLLVMValue(OpBuilder &builder, Location loc,
OpFoldResult foldResult) {
if (auto attr = dyn_cast<Attribute>(foldResult)) {
auto intAttr = cast<IntegerAttr>(attr);
return LLVM::ConstantOp::create(builder, loc, intAttr).getResult();
}
return cast<Value>(foldResult);
}
namespace {
/// Trivial Vector to LLVM conversions
using VectorScaleOpConversion =
OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>;
/// Conversion pattern for a vector.bitcast.
class VectorBitCastOpConversion
: public ConvertOpToLLVMPattern<vector::BitCastOp> {
public:
using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 0-D and 1-D vectors can be lowered to LLVM.
VectorType resultTy = bitCastOp.getResultVectorType();
if (resultTy.getRank() > 1)
return failure();
Type newResultTy = typeConverter->convertType(resultTy);
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
adaptor.getOperands()[0]);
return success();
}
};
/// Overloaded utility that replaces a vector.load, vector.store,
/// vector.maskedload and vector.maskedstore with their respective LLVM
/// couterparts.
static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
vector::LoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, vectorTy, ptr, align,
/*volatile_=*/false,
loadOp.getNontemporal());
}
static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
vector::MaskedLoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align);
}
static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
vector::StoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(),
ptr, align, /*volatile_=*/false,
storeOp.getNontemporal());
}
static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
vector::MaskedStoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align);
}
/// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
/// vector.maskedstore.
template <class LoadOrStoreOp>
class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
public:
explicit VectorLoadStoreConversion(const LLVMTypeConverter &typeConv,
bool useVectorAlign)
: ConvertOpToLLVMPattern<LoadOrStoreOp>(typeConv),
useVectorAlignment(useVectorAlign) {}
using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(LoadOrStoreOp loadOrStoreOp,
typename LoadOrStoreOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 1-D vectors can be lowered to LLVM.
VectorType vectorTy = loadOrStoreOp.getVectorType();
if (vectorTy.getRank() > 1)
return failure();
auto loc = loadOrStoreOp->getLoc();
MemRefType memRefTy = loadOrStoreOp.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getVectorToLLVMAlignment(*this->getTypeConverter(), vectorTy,
memRefTy, align, useVectorAlignment)))
return rewriter.notifyMatchFailure(loadOrStoreOp,
"could not resolve alignment");
// Resolve address.
auto vtype = cast<VectorType>(
this->typeConverter->convertType(loadOrStoreOp.getVectorType()));
Value dataPtr = this->getStridedElementPtr(
rewriter, loc, memRefTy, adaptor.getBase(), adaptor.getIndices());
replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, dataPtr, align,
rewriter);
return success();
}
private:
// If true, use the preferred alignment of the vector type.
// If false, use the preferred alignment of the element type
// of the memref. This flag is intended for use with hardware
// backends that require alignment of vector operations.
const bool useVectorAlignment;
};
/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion
: public ConvertOpToLLVMPattern<vector::GatherOp> {
public:
explicit VectorGatherOpConversion(const LLVMTypeConverter &typeConv,
bool useVectorAlign)
: ConvertOpToLLVMPattern<vector::GatherOp>(typeConv),
useVectorAlignment(useVectorAlign) {}
using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = gather->getLoc();
MemRefType memRefType = dyn_cast<MemRefType>(gather.getBaseType());
assert(memRefType && "The base should be bufferized");
if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter())))
return rewriter.notifyMatchFailure(gather, "memref type not supported");
VectorType vType = gather.getVectorType();
if (vType.getRank() > 1) {
return rewriter.notifyMatchFailure(
gather, "only 1-D vectors can be lowered to LLVM");
}
// Resolve alignment.
unsigned align;
if (failed(getVectorToLLVMAlignment(*this->getTypeConverter(), vType,
memRefType, align, useVectorAlignment)))
return rewriter.notifyMatchFailure(gather, "could not resolve alignment");
// Resolve address.
Value ptr = getStridedElementPtr(rewriter, loc, memRefType,
adaptor.getBase(), adaptor.getIndices());
Value base = adaptor.getBase();
Value ptrs =
getIndexedPtrs(rewriter, loc, *this->getTypeConverter(), memRefType,
base, ptr, adaptor.getIndexVec(), vType);
// Replace with the gather intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(),
adaptor.getPassThru(), rewriter.getI32IntegerAttr(align));
return success();
}
private:
// If true, use the preferred alignment of the vector type.
// If false, use the preferred alignment of the element type
// of the memref. This flag is intended for use with hardware
// backends that require alignment of vector operations.
const bool useVectorAlignment;
};
/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion
: public ConvertOpToLLVMPattern<vector::ScatterOp> {
public:
explicit VectorScatterOpConversion(const LLVMTypeConverter &typeConv,
bool useVectorAlign)
: ConvertOpToLLVMPattern<vector::ScatterOp>(typeConv),
useVectorAlignment(useVectorAlign) {}
using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = scatter->getLoc();
MemRefType memRefType = scatter.getMemRefType();
if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter())))
return rewriter.notifyMatchFailure(scatter, "memref type not supported");
VectorType vType = scatter.getVectorType();
if (vType.getRank() > 1) {
return rewriter.notifyMatchFailure(
scatter, "only 1-D vectors can be lowered to LLVM");
}
// Resolve alignment.
unsigned align;
if (failed(getVectorToLLVMAlignment(*this->getTypeConverter(), vType,
memRefType, align, useVectorAlignment)))
return rewriter.notifyMatchFailure(scatter,
"could not resolve alignment");
// Resolve address.
Value ptr = getStridedElementPtr(rewriter, loc, memRefType,
adaptor.getBase(), adaptor.getIndices());
Value ptrs =
getIndexedPtrs(rewriter, loc, *this->getTypeConverter(), memRefType,
adaptor.getBase(), ptr, adaptor.getIndexVec(), vType);
// Replace with the scatter intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(),
rewriter.getI32IntegerAttr(align));
return success();
}
private:
// If true, use the preferred alignment of the vector type.
// If false, use the preferred alignment of the element type
// of the memref. This flag is intended for use with hardware
// backends that require alignment of vector operations.
const bool useVectorAlignment;
};
/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion
: public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
public:
using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = expand->getLoc();
MemRefType memRefType = expand.getMemRefType();
// Resolve address.
auto vtype = typeConverter->convertType(expand.getVectorType());
Value ptr = getStridedElementPtr(rewriter, loc, memRefType,
adaptor.getBase(), adaptor.getIndices());
rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru());
return success();
}
};
/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion
: public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
public:
using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = compress->getLoc();
MemRefType memRefType = compress.getMemRefType();
// Resolve address.
Value ptr = getStridedElementPtr(rewriter, loc, memRefType,
adaptor.getBase(), adaptor.getIndices());
rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
compress, adaptor.getValueToStore(), ptr, adaptor.getMask());
return success();
}
};
/// Reduction neutral classes for overloading.
class ReductionNeutralZero {};
class ReductionNeutralIntOne {};
class ReductionNeutralFPOne {};
class ReductionNeutralAllOnes {};
class ReductionNeutralSIntMin {};
class ReductionNeutralUIntMin {};
class ReductionNeutralSIntMax {};
class ReductionNeutralUIntMax {};
class ReductionNeutralFPMin {};
class ReductionNeutralFPMax {};
/// Create the reduction neutral zero value.
static Value createReductionNeutralValue(ReductionNeutralZero neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(rewriter, loc, llvmType,
rewriter.getZeroAttr(llvmType));
}
/// Create the reduction neutral integer one value.
static Value createReductionNeutralValue(ReductionNeutralIntOne neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(rewriter, loc, llvmType,
rewriter.getIntegerAttr(llvmType, 1));
}
/// Create the reduction neutral fp one value.
static Value createReductionNeutralValue(ReductionNeutralFPOne neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(rewriter, loc, llvmType,
rewriter.getFloatAttr(llvmType, 1.0));
}
/// Create the reduction neutral all-ones value.
static Value createReductionNeutralValue(ReductionNeutralAllOnes neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getIntegerAttr(
llvmType, llvm::APInt::getAllOnes(llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral signed int minimum value.
static Value createReductionNeutralValue(ReductionNeutralSIntMin neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMinValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral unsigned int minimum value.
static Value createReductionNeutralValue(ReductionNeutralUIntMin neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getMinValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral signed int maximum value.
static Value createReductionNeutralValue(ReductionNeutralSIntMax neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMaxValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral unsigned int maximum value.
static Value createReductionNeutralValue(ReductionNeutralUIntMax neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getMaxValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral fp minimum value.
static Value createReductionNeutralValue(ReductionNeutralFPMin neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
auto floatType = cast<FloatType>(llvmType);
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getFloatAttr(
llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(),
/*Negative=*/false)));
}
/// Create the reduction neutral fp maximum value.
static Value createReductionNeutralValue(ReductionNeutralFPMax neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
auto floatType = cast<FloatType>(llvmType);
return LLVM::ConstantOp::create(
rewriter, loc, llvmType,
rewriter.getFloatAttr(
llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(),
/*Negative=*/true)));
}
/// Returns `accumulator` if it has a valid value. Otherwise, creates and
/// returns a new accumulator value using `ReductionNeutral`.
template <class ReductionNeutral>
static Value getOrCreateAccumulator(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value accumulator) {
if (accumulator)
return accumulator;
return createReductionNeutralValue(ReductionNeutral(), rewriter, loc,
llvmType);
}
/// Creates a value with the 1-D vector shape provided in `llvmType`.
/// This is used as effective vector length by some intrinsics supporting
/// dynamic vector lengths at runtime.
static Value createVectorLengthValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
VectorType vType = cast<VectorType>(llvmType);
auto vShape = vType.getShape();
assert(vShape.size() == 1 && "Unexpected multi-dim vector type");
Value baseVecLength = LLVM::ConstantOp::create(
rewriter, loc, rewriter.getI32Type(),
rewriter.getIntegerAttr(rewriter.getI32Type(), vShape[0]));
if (!vType.getScalableDims()[0])
return baseVecLength;
// For a scalable vector type, create and return `vScale * baseVecLength`.
Value vScale = vector::VectorScaleOp::create(rewriter, loc);
vScale =
arith::IndexCastOp::create(rewriter, loc, rewriter.getI32Type(), vScale);
Value scalableVecLength =
arith::MulIOp::create(rewriter, loc, baseVecLength, vScale);
return scalableVecLength;
}
/// Helper method to lower a `vector.reduction` op that performs an arithmetic
/// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use
/// and `ScalarOp` is the scalar operation used to add the accumulation value if
/// non-null.
template <class LLVMRedIntrinOp, class ScalarOp>
static Value createIntegerReductionArithmeticOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator) {
Value result =
LLVMRedIntrinOp::create(rewriter, loc, llvmType, vectorOperand);
if (accumulator)
result = ScalarOp::create(rewriter, loc, accumulator, result);
return result;
}
/// Helper method to lower a `vector.reduction` operation that performs
/// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector
/// intrinsic to use and `predicate` is the predicate to use to compare+combine
/// the accumulator value if non-null.
template <class LLVMRedIntrinOp>
static Value createIntegerReductionComparisonOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) {
Value result =
LLVMRedIntrinOp::create(rewriter, loc, llvmType, vectorOperand);
if (accumulator) {
Value cmp =
LLVM::ICmpOp::create(rewriter, loc, predicate, accumulator, result);
result = LLVM::SelectOp::create(rewriter, loc, cmp, accumulator, result);
}
return result;
}
namespace {
template <typename Source>
struct VectorToScalarMapper;
template <>
struct VectorToScalarMapper<LLVM::vector_reduce_fmaximum> {
using Type = LLVM::MaximumOp;
};
template <>
struct VectorToScalarMapper<LLVM::vector_reduce_fminimum> {
using Type = LLVM::MinimumOp;
};
template <>
struct VectorToScalarMapper<LLVM::vector_reduce_fmax> {
using Type = LLVM::MaxNumOp;
};
template <>
struct VectorToScalarMapper<LLVM::vector_reduce_fmin> {
using Type = LLVM::MinNumOp;
};
} // namespace
template <class LLVMRedIntrinOp>
static Value createFPReductionComparisonOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, LLVM::FastmathFlagsAttr fmf) {
Value result =
LLVMRedIntrinOp::create(rewriter, loc, llvmType, vectorOperand, fmf);
if (accumulator) {
result = VectorToScalarMapper<LLVMRedIntrinOp>::Type::create(
rewriter, loc, result, accumulator);
}
return result;
}
/// Reduction neutral classes for overloading
class MaskNeutralFMaximum {};
class MaskNeutralFMinimum {};
/// Get the mask neutral floating point maximum value
static llvm::APFloat
getMaskNeutralValue(MaskNeutralFMaximum,
const llvm::fltSemantics &floatSemantics) {
return llvm::APFloat::getSmallest(floatSemantics, /*Negative=*/true);
}
/// Get the mask neutral floating point minimum value
static llvm::APFloat
getMaskNeutralValue(MaskNeutralFMinimum,
const llvm::fltSemantics &floatSemantics) {
return llvm::APFloat::getLargest(floatSemantics, /*Negative=*/false);
}
/// Create the mask neutral floating point MLIR vector constant
template <typename MaskNeutral>
static Value createMaskNeutralValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Type vectorType) {
const auto &floatSemantics = cast<FloatType>(llvmType).getFloatSemantics();
auto value = getMaskNeutralValue(MaskNeutral{}, floatSemantics);
auto denseValue = DenseElementsAttr::get(cast<ShapedType>(vectorType), value);
return LLVM::ConstantOp::create(rewriter, loc, vectorType, denseValue);
}
/// Lowers masked `fmaximum` and `fminimum` reductions using the non-masked
/// intrinsics. It is a workaround to overcome the lack of masked intrinsics for
/// `fmaximum`/`fminimum`.
/// More information: https://github.com/llvm/llvm-project/issues/64940
template <class LLVMRedIntrinOp, class MaskNeutral>
static Value
lowerMaskedReductionWithRegular(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value vectorOperand, Value accumulator,
Value mask, LLVM::FastmathFlagsAttr fmf) {
const Value vectorMaskNeutral = createMaskNeutralValue<MaskNeutral>(
rewriter, loc, llvmType, vectorOperand.getType());
const Value selectedVectorByMask = LLVM::SelectOp::create(
rewriter, loc, mask, vectorOperand, vectorMaskNeutral);
return createFPReductionComparisonOpLowering<LLVMRedIntrinOp>(
rewriter, loc, llvmType, selectedVectorByMask, accumulator, fmf);
}
template <class LLVMRedIntrinOp, class ReductionNeutral>
static Value
lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, Location loc,
Type llvmType, Value vectorOperand,
Value accumulator, LLVM::FastmathFlagsAttr fmf) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
return LLVMRedIntrinOp::create(rewriter, loc, llvmType,
/*startValue=*/accumulator, vectorOperand,
fmf);
}
/// Overloaded methods to lower a *predicated* reduction to an llvm intrinsic
/// that requires a start value. This start value format spans across fp
/// reductions without mask and all the masked reduction intrinsics.
template <class LLVMVPRedIntrinOp, class ReductionNeutral>
static Value
lowerPredicatedReductionWithStartValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value vectorOperand, Value accumulator) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
return LLVMVPRedIntrinOp::create(rewriter, loc, llvmType,
/*startValue=*/accumulator, vectorOperand);
}
template <class LLVMVPRedIntrinOp, class ReductionNeutral>
static Value lowerPredicatedReductionWithStartValue(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, Value mask) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
Value vectorLength =
createVectorLengthValue(rewriter, loc, vectorOperand.getType());
return LLVMVPRedIntrinOp::create(rewriter, loc, llvmType,
/*startValue=*/accumulator, vectorOperand,
mask, vectorLength);
}
template <class LLVMIntVPRedIntrinOp, class IntReductionNeutral,
class LLVMFPVPRedIntrinOp, class FPReductionNeutral>
static Value lowerPredicatedReductionWithStartValue(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, Value mask) {
if (llvmType.isIntOrIndex())
return lowerPredicatedReductionWithStartValue<LLVMIntVPRedIntrinOp,
IntReductionNeutral>(
rewriter, loc, llvmType, vectorOperand, accumulator, mask);
// FP dispatch.
return lowerPredicatedReductionWithStartValue<LLVMFPVPRedIntrinOp,
FPReductionNeutral>(
rewriter, loc, llvmType, vectorOperand, accumulator, mask);
}
/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion
: public ConvertOpToLLVMPattern<vector::ReductionOp> {
public:
explicit VectorReductionOpConversion(const LLVMTypeConverter &typeConv,
bool reassociateFPRed)
: ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
reassociateFPReductions(reassociateFPRed) {}
LogicalResult
matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto kind = reductionOp.getKind();
Type eltType = reductionOp.getDest().getType();
Type llvmType = typeConverter->convertType(eltType);
Value operand = adaptor.getVector();
Value acc = adaptor.getAcc();
Location loc = reductionOp.getLoc();
if (eltType.isIntOrIndex()) {
// Integer reductions: add/mul/min/max/and/or/xor.
Value result;
switch (kind) {
case vector::CombiningKind::ADD:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add,
LLVM::AddOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::MUL:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul,
LLVM::MulOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::MINUI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::ule);
break;
case vector::CombiningKind::MINSI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::sle);
break;
case vector::CombiningKind::MAXUI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::uge);
break;
case vector::CombiningKind::MAXSI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::sge);
break;
case vector::CombiningKind::AND:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and,
LLVM::AndOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::OR:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or,
LLVM::OrOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::XOR:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor,
LLVM::XOrOp>(
rewriter, loc, llvmType, operand, acc);
break;
default:
return failure();
}
rewriter.replaceOp(reductionOp, result);
return success();
}
if (!isa<FloatType>(eltType))
return failure();
arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr();
LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get(
reductionOp.getContext(),
convertArithFastMathFlagsToLLVM(fMFAttr.getValue()));
fmf = LLVM::FastmathFlagsAttr::get(
reductionOp.getContext(),
fmf.getValue() | (reassociateFPReductions ? LLVM::FastmathFlags::reassoc
: LLVM::FastmathFlags::none));
// Floating-point reductions: add/mul/min/max
Value result;
if (kind == vector::CombiningKind::ADD) {
result = lowerReductionWithStartValue<LLVM::vector_reduce_fadd,
ReductionNeutralZero>(
rewriter, loc, llvmType, operand, acc, fmf);
} else if (kind == vector::CombiningKind::MUL) {
result = lowerReductionWithStartValue<LLVM::vector_reduce_fmul,
ReductionNeutralFPOne>(
rewriter, loc, llvmType, operand, acc, fmf);
} else if (kind == vector::CombiningKind::MINIMUMF) {
result =
createFPReductionComparisonOpLowering<LLVM::vector_reduce_fminimum>(
rewriter, loc, llvmType, operand, acc, fmf);
} else if (kind == vector::CombiningKind::MAXIMUMF) {
result =
createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmaximum>(
rewriter, loc, llvmType, operand, acc, fmf);
} else if (kind == vector::CombiningKind::MINNUMF) {
result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmin>(
rewriter, loc, llvmType, operand, acc, fmf);
} else if (kind == vector::CombiningKind::MAXNUMF) {
result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmax>(
rewriter, loc, llvmType, operand, acc, fmf);
} else {
return failure();
}
rewriter.replaceOp(reductionOp, result);
return success();
}
private:
const bool reassociateFPReductions;
};
/// Base class to convert a `vector.mask` operation while matching traits
/// of the maskable operation nested inside. A `VectorMaskOpConversionBase`
/// instance matches against a `vector.mask` operation. The `matchAndRewrite`
/// method performs a second match against the maskable operation `MaskedOp`.
/// Finally, it invokes the virtual method `matchAndRewriteMaskableOp` to be
/// implemented by the concrete conversion classes. This method can match
/// against specific traits of the `vector.mask` and the maskable operation. It
/// must replace the `vector.mask` operation.
template <class MaskedOp>
class VectorMaskOpConversionBase
: public ConvertOpToLLVMPattern<vector::MaskOp> {
public:
using ConvertOpToLLVMPattern<vector::MaskOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MaskOp maskOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
// Match against the maskable operation kind.
auto maskedOp = llvm::dyn_cast_or_null<MaskedOp>(maskOp.getMaskableOp());
if (!maskedOp)
return failure();
return matchAndRewriteMaskableOp(maskOp, maskedOp, rewriter);
}
protected:
virtual LogicalResult
matchAndRewriteMaskableOp(vector::MaskOp maskOp,
vector::MaskableOpInterface maskableOp,
ConversionPatternRewriter &rewriter) const = 0;
};
class MaskedReductionOpConversion
: public VectorMaskOpConversionBase<vector::ReductionOp> {
public:
using VectorMaskOpConversionBase<
vector::ReductionOp>::VectorMaskOpConversionBase;
LogicalResult matchAndRewriteMaskableOp(
vector::MaskOp maskOp, MaskableOpInterface maskableOp,
ConversionPatternRewriter &rewriter) const override {
auto reductionOp = cast<ReductionOp>(maskableOp.getOperation());
auto kind = reductionOp.getKind();
Type eltType = reductionOp.getDest().getType();
Type llvmType = typeConverter->convertType(eltType);
Value operand = reductionOp.getVector();
Value acc = reductionOp.getAcc();
Location loc = reductionOp.getLoc();
arith::FastMathFlagsAttr fMFAttr = reductionOp.getFastMathFlagsAttr();
LLVM::FastmathFlagsAttr fmf = LLVM::FastmathFlagsAttr::get(
reductionOp.getContext(),
convertArithFastMathFlagsToLLVM(fMFAttr.getValue()));
Value result;
switch (kind) {
case vector::CombiningKind::ADD:
result = lowerPredicatedReductionWithStartValue<
LLVM::VPReduceAddOp, ReductionNeutralZero, LLVM::VPReduceFAddOp,
ReductionNeutralZero>(rewriter, loc, llvmType, operand, acc,
maskOp.getMask());
break;
case vector::CombiningKind::MUL:
result = lowerPredicatedReductionWithStartValue<
LLVM::VPReduceMulOp, ReductionNeutralIntOne, LLVM::VPReduceFMulOp,
ReductionNeutralFPOne>(rewriter, loc, llvmType, operand, acc,
maskOp.getMask());
break;
case vector::CombiningKind::MINUI:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceUMinOp,
ReductionNeutralUIntMax>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MINSI:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceSMinOp,
ReductionNeutralSIntMax>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MAXUI:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceUMaxOp,
ReductionNeutralUIntMin>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MAXSI:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceSMaxOp,
ReductionNeutralSIntMin>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::AND:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceAndOp,
ReductionNeutralAllOnes>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::OR:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceOrOp,
ReductionNeutralZero>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::XOR:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceXorOp,
ReductionNeutralZero>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MINNUMF:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceFMinOp,
ReductionNeutralFPMax>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MAXNUMF:
result = lowerPredicatedReductionWithStartValue<LLVM::VPReduceFMaxOp,
ReductionNeutralFPMin>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case CombiningKind::MAXIMUMF:
result = lowerMaskedReductionWithRegular<LLVM::vector_reduce_fmaximum,
MaskNeutralFMaximum>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask(), fmf);
break;
case CombiningKind::MINIMUMF:
result = lowerMaskedReductionWithRegular<LLVM::vector_reduce_fminimum,
MaskNeutralFMinimum>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask(), fmf);
break;
}
// Replace `vector.mask` operation altogether.
rewriter.replaceOp(maskOp, result);
return success();
}
};
class VectorShuffleOpConversion
: public ConvertOpToLLVMPattern<vector::ShuffleOp> {
public:
using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = shuffleOp->getLoc();
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getResultVectorType();
Type llvmType = typeConverter->convertType(vectorType);
ArrayRef<int64_t> mask = shuffleOp.getMask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
#ifndef NDEBUG
bool wellFormed0DCase =
v1Type.getRank() == 0 && v2Type.getRank() == 0 && rank == 1;
bool wellFormedNDCase =
v1Type.getRank() == rank && v2Type.getRank() == rank;
assert((wellFormed0DCase || wellFormedNDCase) && "op is not well-formed");
#endif
// For rank 0 and 1, where both operands have *exactly* the same vector
// type, there is direct shuffle support in LLVM. Use it!
if (rank <= 1 && v1Type == v2Type) {
Value llvmShuffleOp = LLVM::ShuffleVectorOp::create(
rewriter, loc, adaptor.getV1(), adaptor.getV2(),
llvm::to_vector_of<int32_t>(mask));
rewriter.replaceOp(shuffleOp, llvmShuffleOp);
return success();
}
// For all other cases, insert the individual values individually.
int64_t v1Dim = v1Type.getDimSize(0);
Type eltType;
if (auto arrayType = dyn_cast<LLVM::LLVMArrayType>(llvmType))
eltType = arrayType.getElementType();
else
eltType = cast<VectorType>(llvmType).getElementType();
Value insert = LLVM::PoisonOp::create(rewriter, loc, llvmType);
int64_t insPos = 0;
for (int64_t extPos : mask) {
Value value = adaptor.getV1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.getV2();
}
Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
eltType, rank, extPos);
insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(shuffleOp, insert);
return success();
}
};
class VectorExtractOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractOp> {
public:
using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = extractOp->getLoc();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter->convertType(resultType);
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
SmallVector<OpFoldResult> positionVec = getMixedValues(
adaptor.getStaticPosition(), adaptor.getDynamicPosition(), rewriter);
// The Vector -> LLVM lowering models N-D vectors as nested aggregates of
// 1-d vectors. This nesting is modeled using arrays. We do this conversion
// from a N-d vector extract to a nested aggregate vector extract in two
// steps:
// - Extract a member from the nested aggregate. The result can be
// a lower rank nested aggregate or a vector (1-D). This is done using
// `llvm.extractvalue`.
// - Extract a scalar out of the vector if needed. This is done using
// `llvm.extractelement`.
// Determine if we need to extract a member out of the aggregate. We
// always need to extract a member if the input rank >= 2.
bool extractsAggregate = extractOp.getSourceVectorType().getRank() >= 2;
// Determine if we need to extract a scalar as the result. We extract
// a scalar if the extract is full rank, i.e., the number of indices is
// equal to source vector rank.
bool extractsScalar = static_cast<int64_t>(positionVec.size()) ==
extractOp.getSourceVectorType().getRank();
// Since the LLVM type converter converts 0-d vectors to 1-d vectors, we
// need to add a position for this change.
if (extractOp.getSourceVectorType().getRank() == 0) {
Type idxType = typeConverter->convertType(rewriter.getIndexType());
positionVec.push_back(rewriter.getZeroAttr(idxType));
}
Value extracted = adaptor.getVector();
if (extractsAggregate) {
ArrayRef<OpFoldResult> position(positionVec);
if (extractsScalar) {
// If we are extracting a scalar from the extracted member, we drop
// the last index, which will be used to extract the scalar out of the
// vector.
position = position.drop_back();
}
// llvm.extractvalue does not support dynamic dimensions.
if (!llvm::all_of(position, llvm::IsaPred<Attribute>)) {
return failure();
}
extracted = LLVM::ExtractValueOp::create(rewriter, loc, extracted,
getAsIntegers(position));
}
if (extractsScalar) {
extracted = LLVM::ExtractElementOp::create(
rewriter, loc, extracted,
getAsLLVMValue(rewriter, loc, positionVec.back()));
}
rewriter.replaceOp(extractOp, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
/// -> !llvm."<8 x f32>">
/// ```
class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
public:
using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() > 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(
fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc());
return success();
}
};
class VectorInsertOpConversion
: public ConvertOpToLLVMPattern<vector::InsertOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = insertOp->getLoc();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter->convertType(destVectorType);
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
SmallVector<OpFoldResult> positionVec = getMixedValues(
adaptor.getStaticPosition(), adaptor.getDynamicPosition(), rewriter);
// The logic in this pattern mirrors VectorExtractOpConversion. Refer to
// its explanatory comment about how N-D vectors are converted as nested
// aggregates (llvm.array's) of 1D vectors.
//
// The innermost dimension of the destination vector, when converted to a
// nested aggregate form, will always be a 1D vector.
//
// * If the insertion is happening into the innermost dimension of the
// destination vector:
// - If the destination is a nested aggregate, extract a 1D vector out of
// the aggregate. This can be done using llvm.extractvalue. The
// destination is now guaranteed to be a 1D vector, to which we are
// inserting.
// - Do the insertion into the 1D destination vector, and make the result
// the new source nested aggregate. This can be done using
// llvm.insertelement.
// * Insert the source nested aggregate into the destination nested
// aggregate.
// Determine if we need to extract/insert a 1D vector out of the aggregate.
bool isNestedAggregate = isa<LLVM::LLVMArrayType>(llvmResultType);
// Determine if we need to insert a scalar into the 1D vector.
bool insertIntoInnermostDim =
static_cast<int64_t>(positionVec.size()) == destVectorType.getRank();
ArrayRef<OpFoldResult> positionOf1DVectorWithinAggregate(
positionVec.begin(),
insertIntoInnermostDim ? positionVec.size() - 1 : positionVec.size());
OpFoldResult positionOfScalarWithin1DVector;
if (destVectorType.getRank() == 0) {
// Since the LLVM type converter converts 0D vectors to 1D vectors, we
// need to create a 0 here as the position into the 1D vector.
Type idxType = typeConverter->convertType(rewriter.getIndexType());
positionOfScalarWithin1DVector = rewriter.getZeroAttr(idxType);
} else if (insertIntoInnermostDim) {
positionOfScalarWithin1DVector = positionVec.back();
}
// We are going to mutate this 1D vector until it is either the final
// result (in the non-aggregate case) or the value that needs to be
// inserted into the aggregate result.
Value sourceAggregate = adaptor.getValueToStore();
if (insertIntoInnermostDim) {
// Scalar-into-1D-vector case, so we know we will have to create a
// InsertElementOp. The question is into what destination.
if (isNestedAggregate) {
// Aggregate case: the destination for the InsertElementOp needs to be
// extracted from the aggregate.
if (!llvm::all_of(positionOf1DVectorWithinAggregate,
llvm::IsaPred<Attribute>)) {
// llvm.extractvalue does not support dynamic dimensions.
return failure();
}
sourceAggregate = LLVM::ExtractValueOp::create(
rewriter, loc, adaptor.getDest(),
getAsIntegers(positionOf1DVectorWithinAggregate));
} else {
// No-aggregate case. The destination for the InsertElementOp is just
// the insertOp's destination.
sourceAggregate = adaptor.getDest();
}
// Insert the scalar into the 1D vector.
sourceAggregate = LLVM::InsertElementOp::create(
rewriter, loc, sourceAggregate.getType(), sourceAggregate,
adaptor.getValueToStore(),
getAsLLVMValue(rewriter, loc, positionOfScalarWithin1DVector));
}
Value result = sourceAggregate;
if (isNestedAggregate) {
result = LLVM::InsertValueOp::create(
rewriter, loc, adaptor.getDest(), sourceAggregate,
getAsIntegers(positionOf1DVectorWithinAggregate));
}
rewriter.replaceOp(insertOp, result);
return success();
}
};
/// Lower vector.scalable.insert ops to LLVM vector.insert
struct VectorScalableInsertOpLowering
: public ConvertOpToLLVMPattern<vector::ScalableInsertOp> {
using ConvertOpToLLVMPattern<
vector::ScalableInsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScalableInsertOp insOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::vector_insert>(
insOp, adaptor.getDest(), adaptor.getValueToStore(), adaptor.getPos());
return success();
}
};
/// Lower vector.scalable.extract ops to LLVM vector.extract
struct VectorScalableExtractOpLowering
: public ConvertOpToLLVMPattern<vector::ScalableExtractOp> {
using ConvertOpToLLVMPattern<
vector::ScalableExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScalableExtractOp extOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::vector_extract>(
extOp, typeConverter->convertType(extOp.getResultVectorType()),
adaptor.getSource(), adaptor.getPos());
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = vector.broadcast %f0 : f32 to vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = arith::ConstantOp::create(rewriter, loc, elemType,
rewriter.getZeroAttr(elemType));
Value desc = vector::BroadcastOp::create(rewriter, loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = ExtractOp::create(rewriter, loc, op.getLhs(), i);
Value extrRHS = ExtractOp::create(rewriter, loc, op.getRhs(), i);
Value extrACC = ExtractOp::create(rewriter, loc, op.getAcc(), i);
Value fma = FMAOp::create(rewriter, loc, extrLHS, extrRHS, extrACC);
desc = InsertOp::create(rewriter, loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// Returns the strides if the memory underlying `memRefType` has a contiguous
/// static layout.
static std::optional<SmallVector<int64_t, 4>>
computeContiguousStrides(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(memRefType.getStridesAndOffset(strides, offset)))
return std::nullopt;
if (!strides.empty() && strides.back() != 1)
return std::nullopt;
// If no layout or identity layout, this is contiguous by definition.
if (memRefType.getLayout().isIdentity())
return strides;
// Otherwise, we must determine contiguity form shapes. This can only ever
// work in static cases because MemRefType is underspecified to represent
// contiguous dynamic shapes in other ways than with just empty/identity
// layout.
auto sizes = memRefType.getShape();
for (int index = 0, e = strides.size() - 1; index < e; ++index) {
if (ShapedType::isDynamic(sizes[index + 1]) ||
ShapedType::isDynamic(strides[index]) ||
ShapedType::isDynamic(strides[index + 1]))
return std::nullopt;
if (strides[index] != strides[index + 1] * sizes[index + 1])
return std::nullopt;
}
return strides;
}
class VectorTypeCastOpConversion
: public ConvertOpToLLVMPattern<vector::TypeCastOp> {
public:
using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = castOp->getLoc();
MemRefType sourceMemRefType =
cast<MemRefType>(castOp.getOperand().getType());
MemRefType targetMemRefType = castOp.getType();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
dyn_cast<LLVM::LLVMStructType>(adaptor.getOperands()[0].getType());
if (!llvmSourceDescriptorTy)
return failure();
MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]);
auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>(
typeConverter->convertType(targetMemRefType));
if (!llvmTargetDescriptorTy)
return failure();
// Only contiguous source buffers supported atm.
auto sourceStrides = computeContiguousStrides(sourceMemRefType);
if (!sourceStrides)
return failure();
auto targetStrides = computeContiguousStrides(targetMemRefType);
if (!targetStrides)
return failure();
// Only support static strides for now, regardless of contiguity.
if (llvm::any_of(*targetStrides, ShapedType::isDynamic))
return failure();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
// Create descriptor.
auto desc = MemRefDescriptor::poison(rewriter, loc, llvmTargetDescriptorTy);
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = LLVM::ConstantOp::create(rewriter, loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (const auto &indexedSize :
llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = LLVM::ConstantOp::create(rewriter, loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
(*targetStrides)[index]);
auto stride =
LLVM::ConstantOp::create(rewriter, loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(castOp, {desc});
return success();
}
};
/// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only).
/// Non-scalable versions of this operation are handled in Vector Transforms.
class VectorCreateMaskOpConversion
: public OpConversionPattern<vector::CreateMaskOp> {
public:
explicit VectorCreateMaskOpConversion(MLIRContext *context,
bool enableIndexOpt)
: OpConversionPattern<vector::CreateMaskOp>(context),
force32BitVectorIndices(enableIndexOpt) {}
LogicalResult
matchAndRewrite(vector::CreateMaskOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto dstType = op.getType();
if (dstType.getRank() != 1 || !cast<VectorType>(dstType).isScalable())
return failure();
IntegerType idxType =
force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
auto loc = op->getLoc();
Value indices = LLVM::StepVectorOp::create(
rewriter, loc,
LLVM::getVectorType(idxType, dstType.getShape()[0],
/*isScalable=*/true));
auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType,
adaptor.getOperands()[0]);
Value bounds = BroadcastOp::create(rewriter, loc, indices.getType(), bound);
Value comp = arith::CmpIOp::create(rewriter, loc, arith::CmpIPredicate::slt,
indices, bounds);
rewriter.replaceOp(op, comp);
return success();
}
private:
const bool force32BitVectorIndices;
};
class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
SymbolTableCollection *symbolTables = nullptr;
public:
explicit VectorPrintOpConversion(
const LLVMTypeConverter &typeConverter,
SymbolTableCollection *symbolTables = nullptr)
: ConvertOpToLLVMPattern<vector::PrintOp>(typeConverter),
symbolTables(symbolTables) {}
// Lowering implementation that relies on a small runtime support library,
// which only needs to provide a few printing methods (single value for all
// data types, opening/closing bracket, comma, newline). The lowering splits
// the vector into elementary printing operations. The advantage of this
// approach is that the library can remain unaware of all low-level
// implementation details of vectors while still supporting output of any
// shaped and dimensioned vector.
//
// Note: This lowering only handles scalars, n-D vectors are broken into
// printing scalars in loops in VectorToSCF.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto parent = printOp->getParentOfType<ModuleOp>();
if (!parent)
return failure();
auto loc = printOp->getLoc();
if (auto value = adaptor.getSource()) {
Type printType = printOp.getPrintType();
if (isa<VectorType>(printType)) {
// Vectors should be broken into elementary print ops in VectorToSCF.
return failure();
}
if (failed(emitScalarPrint(rewriter, parent, loc, printType, value)))
return failure();
}
auto punct = printOp.getPunctuation();
if (auto stringLiteral = printOp.getStringLiteral()) {
auto createResult =
LLVM::createPrintStrCall(rewriter, loc, parent, "vector_print_str",
*stringLiteral, *getTypeConverter(),
/*addNewline=*/false);
if (createResult.failed())
return failure();
} else if (punct != PrintPunctuation::NoPunctuation) {
FailureOr<LLVM::LLVMFuncOp> op = [&]() {
switch (punct) {
case PrintPunctuation::Close:
return LLVM::lookupOrCreatePrintCloseFn(rewriter, parent,
symbolTables);
case PrintPunctuation::Open:
return LLVM::lookupOrCreatePrintOpenFn(rewriter, parent,
symbolTables);
case PrintPunctuation::Comma:
return LLVM::lookupOrCreatePrintCommaFn(rewriter, parent,
symbolTables);
case PrintPunctuation::NewLine:
return LLVM::lookupOrCreatePrintNewlineFn(rewriter, parent,
symbolTables);
default:
llvm_unreachable("unexpected punctuation");
}
}();
if (failed(op))
return failure();
emitCall(rewriter, printOp->getLoc(), op.value());
}
rewriter.eraseOp(printOp);
return success();
}
private:
enum class PrintConversion {
// clang-format off
None,
ZeroExt64,
SignExt64,
Bitcast16
// clang-format on
};
LogicalResult emitScalarPrint(ConversionPatternRewriter &rewriter,
ModuleOp parent, Location loc, Type printType,
Value value) const {
if (typeConverter->convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support.
PrintConversion conversion = PrintConversion::None;
FailureOr<Operation *> printer;
if (printType.isF32()) {
printer = LLVM::lookupOrCreatePrintF32Fn(rewriter, parent, symbolTables);
} else if (printType.isF64()) {
printer = LLVM::lookupOrCreatePrintF64Fn(rewriter, parent, symbolTables);
} else if (printType.isF16()) {
conversion = PrintConversion::Bitcast16; // bits!
printer = LLVM::lookupOrCreatePrintF16Fn(rewriter, parent, symbolTables);
} else if (printType.isBF16()) {
conversion = PrintConversion::Bitcast16; // bits!
printer = LLVM::lookupOrCreatePrintBF16Fn(rewriter, parent, symbolTables);
} else if (printType.isIndex()) {
printer = LLVM::lookupOrCreatePrintU64Fn(rewriter, parent, symbolTables);
} else if (auto intTy = dyn_cast<IntegerType>(printType)) {
// Integers need a zero or sign extension on the operand
// (depending on the source type) as well as a signed or
// unsigned print method. Up to 64-bit is supported.
unsigned width = intTy.getWidth();
if (intTy.isUnsigned()) {
if (width <= 64) {
if (width < 64)
conversion = PrintConversion::ZeroExt64;
printer =
LLVM::lookupOrCreatePrintU64Fn(rewriter, parent, symbolTables);
} else {
return failure();
}
} else {
assert(intTy.isSignless() || intTy.isSigned());
if (width <= 64) {
// Note that we *always* zero extend booleans (1-bit integers),
// so that true/false is printed as 1/0 rather than -1/0.
if (width == 1)
conversion = PrintConversion::ZeroExt64;
else if (width < 64)
conversion = PrintConversion::SignExt64;
printer =
LLVM::lookupOrCreatePrintI64Fn(rewriter, parent, symbolTables);
} else {
return failure();
}
}
} else {
return failure();
}
if (failed(printer))
return failure();
switch (conversion) {
case PrintConversion::ZeroExt64:
value = arith::ExtUIOp::create(
rewriter, loc, IntegerType::get(rewriter.getContext(), 64), value);
break;
case PrintConversion::SignExt64:
value = arith::ExtSIOp::create(
rewriter, loc, IntegerType::get(rewriter.getContext(), 64), value);
break;
case PrintConversion::Bitcast16:
value = LLVM::BitcastOp::create(
rewriter, loc, IntegerType::get(rewriter.getContext(), 16), value);
break;
case PrintConversion::None:
break;
}
emitCall(rewriter, loc, printer.value(), value);
return success();
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
LLVM::CallOp::create(rewriter, loc, TypeRange(), SymbolRefAttr::get(ref),
params);
}
};
/// A broadcast of a scalar is lowered to an insertelement + a shufflevector
/// operation. Only broadcasts to 0-d and 1-d vectors are lowered by this
/// pattern, the higher rank cases are handled by another pattern.
struct VectorBroadcastScalarToLowRankLowering
: public ConvertOpToLLVMPattern<vector::BroadcastOp> {
using ConvertOpToLLVMPattern<vector::BroadcastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::BroadcastOp broadcast, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (isa<VectorType>(broadcast.getSourceType()))
return rewriter.notifyMatchFailure(
broadcast, "broadcast from vector type not handled");
VectorType resultType = broadcast.getType();
if (resultType.getRank() > 1)
return rewriter.notifyMatchFailure(broadcast,
"broadcast to 2+-d handled elsewhere");
// First insert it into a poison vector so we can shuffle it.
auto vectorType = typeConverter->convertType(broadcast.getType());
Value poison =
LLVM::PoisonOp::create(rewriter, broadcast.getLoc(), vectorType);
auto zero = LLVM::ConstantOp::create(
rewriter, broadcast.getLoc(),
typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
// For 0-d vector, we simply do `insertelement`.
if (resultType.getRank() == 0) {
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
broadcast, vectorType, poison, adaptor.getSource(), zero);
return success();
}
// For 1-d vector, we additionally do a `vectorshuffle`.
auto v =
LLVM::InsertElementOp::create(rewriter, broadcast.getLoc(), vectorType,
poison, adaptor.getSource(), zero);
int64_t width = cast<VectorType>(broadcast.getType()).getDimSize(0);
SmallVector<int32_t> zeroValues(width, 0);
// Shuffle the value across the desired number of elements.
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(broadcast, v, poison,
zeroValues);
return success();
}
};
/// The broadcast of a scalar is lowered to an insertelement + a shufflevector
/// operation. Only broadcasts to 2+-d vector result types are lowered by this
/// pattern, the 1-d case is handled by another pattern. Broadcasts from vectors
/// are not converted to LLVM, only broadcasts from scalars are.
struct VectorBroadcastScalarToNdLowering
: public ConvertOpToLLVMPattern<BroadcastOp> {
using ConvertOpToLLVMPattern<BroadcastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(BroadcastOp broadcast, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (isa<VectorType>(broadcast.getSourceType()))
return rewriter.notifyMatchFailure(
broadcast, "broadcast from vector type not handled");
VectorType resultType = broadcast.getType();
if (resultType.getRank() <= 1)
return rewriter.notifyMatchFailure(
broadcast, "broadcast to 1-d or 0-d handled elsewhere");
// First insert it into an undef vector so we can shuffle it.
auto loc = broadcast.getLoc();
auto vectorTypeInfo =
LLVM::detail::extractNDVectorTypeInfo(resultType, *getTypeConverter());
auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy;
auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy;
if (!llvmNDVectorTy || !llvm1DVectorTy)
return failure();
// Construct returned value.
Value desc = LLVM::PoisonOp::create(rewriter, loc, llvmNDVectorTy);
// Construct a 1-D vector with the broadcasted value that we insert in all
// the places within the returned descriptor.
Value vdesc = LLVM::PoisonOp::create(rewriter, loc, llvm1DVectorTy);
auto zero = LLVM::ConstantOp::create(
rewriter, loc, typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
Value v = LLVM::InsertElementOp::create(rewriter, loc, llvm1DVectorTy,
vdesc, adaptor.getSource(), zero);
// Shuffle the value across the desired number of elements.
int64_t width = resultType.getDimSize(resultType.getRank() - 1);
SmallVector<int32_t> zeroValues(width, 0);
v = LLVM::ShuffleVectorOp::create(rewriter, loc, v, v, zeroValues);
// Iterate of linear index, convert to coords space and insert broadcasted
// 1-D vector in each position.
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) {
desc = LLVM::InsertValueOp::create(rewriter, loc, desc, v, position);
});
rewriter.replaceOp(broadcast, desc);
return success();
}
};
/// Conversion pattern for a `vector.interleave`.
/// This supports fixed-sized vectors and scalable vectors.
struct VectorInterleaveOpLowering
: public ConvertOpToLLVMPattern<vector::InterleaveOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InterleaveOp interleaveOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = interleaveOp.getResultVectorType();
// n-D interleaves should have been lowered already.
if (resultType.getRank() != 1)
return rewriter.notifyMatchFailure(interleaveOp,
"InterleaveOp not rank 1");
// If the result is rank 1, then this directly maps to LLVM.
if (resultType.isScalable()) {
rewriter.replaceOpWithNewOp<LLVM::vector_interleave2>(
interleaveOp, typeConverter->convertType(resultType),
adaptor.getLhs(), adaptor.getRhs());
return success();
}
// Lower fixed-size interleaves to a shufflevector. While the
// vector.interleave2 intrinsic supports fixed and scalable vectors, the
// langref still recommends fixed-vectors use shufflevector, see:
// https://llvm.org/docs/LangRef.html#id876.
int64_t resultVectorSize = resultType.getNumElements();
SmallVector<int32_t> interleaveShuffleMask;
interleaveShuffleMask.reserve(resultVectorSize);
for (int i = 0, end = resultVectorSize / 2; i < end; ++i) {
interleaveShuffleMask.push_back(i);
interleaveShuffleMask.push_back((resultVectorSize / 2) + i);
}
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(
interleaveOp, adaptor.getLhs(), adaptor.getRhs(),
interleaveShuffleMask);
return success();
}
};
/// Conversion pattern for a `vector.deinterleave`.
/// This supports fixed-sized vectors and scalable vectors.
struct VectorDeinterleaveOpLowering
: public ConvertOpToLLVMPattern<vector::DeinterleaveOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::DeinterleaveOp deinterleaveOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = deinterleaveOp.getResultVectorType();
VectorType sourceType = deinterleaveOp.getSourceVectorType();
auto loc = deinterleaveOp.getLoc();
// Note: n-D deinterleave operations should be lowered to the 1-D before
// converting to LLVM.
if (resultType.getRank() != 1)
return rewriter.notifyMatchFailure(deinterleaveOp,
"DeinterleaveOp not rank 1");
if (resultType.isScalable()) {
auto llvmTypeConverter = this->getTypeConverter();
auto deinterleaveResults = deinterleaveOp.getResultTypes();
auto packedOpResults =
llvmTypeConverter->packOperationResults(deinterleaveResults);
auto intrinsic = LLVM::vector_deinterleave2::create(
rewriter, loc, packedOpResults, adaptor.getSource());
auto evenResult = LLVM::ExtractValueOp::create(
rewriter, loc, intrinsic->getResult(0), 0);
auto oddResult = LLVM::ExtractValueOp::create(rewriter, loc,
intrinsic->getResult(0), 1);
rewriter.replaceOp(deinterleaveOp, ValueRange{evenResult, oddResult});
return success();
}
// Lower fixed-size deinterleave to two shufflevectors. While the
// vector.deinterleave2 intrinsic supports fixed and scalable vectors, the
// langref still recommends fixed-vectors use shufflevector, see:
// https://llvm.org/docs/LangRef.html#id889.
int64_t resultVectorSize = resultType.getNumElements();
SmallVector<int32_t> evenShuffleMask;
SmallVector<int32_t> oddShuffleMask;
evenShuffleMask.reserve(resultVectorSize);
oddShuffleMask.reserve(resultVectorSize);
for (int i = 0; i < sourceType.getNumElements(); ++i) {
if (i % 2 == 0)
evenShuffleMask.push_back(i);
else
oddShuffleMask.push_back(i);
}
auto poison = LLVM::PoisonOp::create(rewriter, loc, sourceType);
auto evenShuffle = LLVM::ShuffleVectorOp::create(
rewriter, loc, adaptor.getSource(), poison, evenShuffleMask);
auto oddShuffle = LLVM::ShuffleVectorOp::create(
rewriter, loc, adaptor.getSource(), poison, oddShuffleMask);
rewriter.replaceOp(deinterleaveOp, ValueRange{evenShuffle, oddShuffle});
return success();
}
};
/// Conversion pattern for a `vector.from_elements`.
struct VectorFromElementsLowering
: public ConvertOpToLLVMPattern<vector::FromElementsOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FromElementsOp fromElementsOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = fromElementsOp.getLoc();
VectorType vectorType = fromElementsOp.getType();
// TODO: Multi-dimensional vectors lower to !llvm.array<... x vector<>>.
// Such ops should be handled in the same way as vector.insert.
if (vectorType.getRank() > 1)
return rewriter.notifyMatchFailure(fromElementsOp,
"rank > 1 vectors are not supported");
Type llvmType = typeConverter->convertType(vectorType);
Value result = LLVM::PoisonOp::create(rewriter, loc, llvmType);
for (auto [idx, val] : llvm::enumerate(adaptor.getElements()))
result = vector::InsertOp::create(rewriter, loc, val, result, idx);
rewriter.replaceOp(fromElementsOp, result);
return success();
}
};
/// Conversion pattern for a `vector.to_elements`.
struct VectorToElementsLowering
: public ConvertOpToLLVMPattern<vector::ToElementsOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ToElementsOp toElementsOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = toElementsOp.getLoc();
auto idxType = typeConverter->convertType(rewriter.getIndexType());
Value source = adaptor.getSource();
SmallVector<Value> results(toElementsOp->getNumResults());
for (auto [idx, element] : llvm::enumerate(toElementsOp.getElements())) {
// Create an extractelement operation only for results that are not dead.
if (element.use_empty())
continue;
auto constIdx = LLVM::ConstantOp::create(
rewriter, loc, idxType, rewriter.getIntegerAttr(idxType, idx));
auto llvmType = typeConverter->convertType(element.getType());
Value result = LLVM::ExtractElementOp::create(rewriter, loc, llvmType,
source, constIdx);
results[idx] = result;
}
rewriter.replaceOp(toElementsOp, results);
return success();
}
};
/// Conversion pattern for vector.step.
struct VectorScalableStepOpLowering
: public ConvertOpToLLVMPattern<vector::StepOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::StepOp stepOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resultType = cast<VectorType>(stepOp.getType());
if (!resultType.isScalable()) {
return failure();
}
Type llvmType = typeConverter->convertType(stepOp.getType());
rewriter.replaceOpWithNewOp<LLVM::StepVectorOp>(stepOp, llvmType);
return success();
}
};
/// Progressive lowering of a `vector.contract %a, %b, %c` with row-major matmul
/// semantics to:
/// ```
/// %flattened_a = vector.shape_cast %a
/// %flattened_b = vector.shape_cast %b
/// %flattened_d = vector.matrix_multiply %flattened_a, %flattened_b
/// %d = vector.shape_cast %%flattened_d
/// %e = add %c, %d
/// ```
/// `vector.matrix_multiply` later lowers to `llvm.matrix.multiply`.
//
/// This only kicks in when vectorContractLowering is set to Matmul and
/// the vector.contract op is a row-major matrix multiply.
class ContractionOpToMatmulOpLowering
: public vector::MaskableOpRewritePattern<vector::ContractionOp> {
public:
using MaskableOpRewritePattern::MaskableOpRewritePattern;
ContractionOpToMatmulOpLowering(
vector::VectorContractLowering vectorContractLowering,
MLIRContext *context, PatternBenefit benefit = 100)
: MaskableOpRewritePattern<vector::ContractionOp>(context, benefit) {}
FailureOr<Value>
matchAndRewriteMaskableOp(vector::ContractionOp op, MaskingOpInterface maskOp,
PatternRewriter &rewriter) const override;
};
/// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
/// semantics to:
/// ```
/// %mta = maybe_transpose
/// %mtb = maybe_transpose
/// %flattened_a = vector.shape_cast %mta
/// %flattened_b = vector.shape_cast %mtb
/// %flattened_d = llvm.intr.matrix.multiply %flattened_a, %flattened_b
/// %mtd = vector.shape_cast %flattened_d
/// %d = maybe_untranspose %mtd
/// %e = add %c, %d
/// ```
//
/// This only kicks in when vectorContractLowering is set to `Matmul`.
/// vector.transpose operations are inserted if the vector.contract op is not a
/// row-major matrix multiply.
///
/// Scalable vectors are not supported.
FailureOr<Value> ContractionOpToMatmulOpLowering::matchAndRewriteMaskableOp(
vector::ContractionOp op, MaskingOpInterface maskOp,
PatternRewriter &rew) const {
// TODO: Support vector.mask.
if (maskOp)
return failure();
auto iteratorTypes = op.getIteratorTypes().getValue();
if (!isParallelIterator(iteratorTypes[0]) ||
!isParallelIterator(iteratorTypes[1]) ||
!isReductionIterator(iteratorTypes[2]))
return failure();
Type opResType = op.getType();
VectorType vecType = dyn_cast<VectorType>(opResType);
if (vecType && vecType.isScalable()) {
// Note - this is sufficient to reject all cases with scalable vectors.
return failure();
}
Type elementType = op.getLhsType().getElementType();
if (!elementType.isIntOrFloat())
return failure();
Type dstElementType = vecType ? vecType.getElementType() : opResType;
if (elementType != dstElementType)
return failure();
// Perform lhs + rhs transpositions to conform to matmul row-major semantics.
// Bail out if the contraction cannot be put in this form.
MLIRContext *ctx = op.getContext();
Location loc = op.getLoc();
AffineExpr m, n, k;
bindDims(rew.getContext(), m, n, k);
// LHS must be A(m, k) or A(k, m).
Value lhs = op.getLhs();
auto lhsMap = op.getIndexingMapsArray()[0];
if (lhsMap == AffineMap::get(3, 0, {k, m}, ctx))
lhs = vector::TransposeOp::create(rew, loc, lhs, ArrayRef<int64_t>{1, 0});
else if (lhsMap != AffineMap::get(3, 0, {m, k}, ctx))
return failure();
// RHS must be B(k, n) or B(n, k).
Value rhs = op.getRhs();
auto rhsMap = op.getIndexingMapsArray()[1];
if (rhsMap == AffineMap::get(3, 0, {n, k}, ctx))
rhs = vector::TransposeOp::create(rew, loc, rhs, ArrayRef<int64_t>{1, 0});
else if (rhsMap != AffineMap::get(3, 0, {k, n}, ctx))
return failure();
// At this point lhs and rhs are in row-major.
VectorType lhsType = cast<VectorType>(lhs.getType());
VectorType rhsType = cast<VectorType>(rhs.getType());
int64_t lhsRows = lhsType.getDimSize(0);
int64_t lhsColumns = lhsType.getDimSize(1);
int64_t rhsColumns = rhsType.getDimSize(1);
Type flattenedLHSType =
VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
lhs = vector::ShapeCastOp::create(rew, loc, flattenedLHSType, lhs);
Type flattenedRHSType =
VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
rhs = vector::ShapeCastOp::create(rew, loc, flattenedRHSType, rhs);
Value mul = LLVM::MatrixMultiplyOp::create(
rew, loc,
VectorType::get(lhsRows * rhsColumns,
cast<VectorType>(lhs.getType()).getElementType()),
lhs, rhs, lhsRows, lhsColumns, rhsColumns);
mul = vector::ShapeCastOp::create(
rew, loc,
VectorType::get({lhsRows, rhsColumns},
getElementTypeOrSelf(op.getAcc().getType())),
mul);
// ACC must be C(m, n) or C(n, m).
auto accMap = op.getIndexingMapsArray()[2];
if (accMap == AffineMap::get(3, 0, {n, m}, ctx))
mul = vector::TransposeOp::create(rew, loc, mul, ArrayRef<int64_t>{1, 0});
else if (accMap != AffineMap::get(3, 0, {m, n}, ctx))
llvm_unreachable("invalid contraction semantics");
Value res = isa<IntegerType>(elementType)
? static_cast<Value>(
arith::AddIOp::create(rew, loc, op.getAcc(), mul))
: static_cast<Value>(
arith::AddFOp::create(rew, loc, op.getAcc(), mul));
return res;
}
/// Lowers vector.transpose to llvm.intr.matrix.transpose
class TransposeOpToMatrixTransposeOpLowering
: public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern<TransposeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
Value input = op.getVector();
VectorType inputType = op.getSourceVectorType();
VectorType resType = op.getResultVectorType();
if (inputType.isScalable())
return rewriter.notifyMatchFailure(
op, "This lowering does not support scalable vectors");
// Set up convenience transposition table.
ArrayRef<int64_t> transp = op.getPermutation();
if (resType.getRank() != 2 || transp[0] != 1 || transp[1] != 0) {
return failure();
}
Type flattenedType =
VectorType::get(resType.getNumElements(), resType.getElementType());
auto matrix =
vector::ShapeCastOp::create(rewriter, loc, flattenedType, input);
auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
Value trans = LLVM::MatrixTransposeOp::create(rewriter, loc, flattenedType,
matrix, rows, columns);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
return success();
}
};
/// Convert `vector.splat` to `vector.broadcast`. There is a path to LLVM from
/// `vector.broadcast` through other patterns.
struct VectorSplatToBroadcast : public ConvertOpToLLVMPattern<vector::SplatOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::SplatOp splat, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(splat, splat.getType(),
adaptor.getInput());
return success();
}
};
} // namespace
void mlir::vector::populateVectorRankReducingFMAPattern(
RewritePatternSet &patterns) {
patterns.add<VectorFMAOpNDRewritePattern>(patterns.getContext());
}
void mlir::vector::populateVectorContractToMatrixMultiply(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<ContractionOpToMatmulOpLowering>(patterns.getContext(), benefit);
}
void mlir::vector::populateVectorTransposeToFlatTranspose(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<TransposeOpToMatrixTransposeOpLowering>(patterns.getContext(),
benefit);
}
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
const LLVMTypeConverter &converter, RewritePatternSet &patterns,
bool reassociateFPReductions, bool force32BitVectorIndices,
bool useVectorAlignment) {
// This function populates only ConversionPatterns, not RewritePatterns.
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
patterns.add<VectorCreateMaskOpConversion>(ctx, force32BitVectorIndices);
patterns.add<VectorLoadStoreConversion<vector::LoadOp>,
VectorLoadStoreConversion<vector::MaskedLoadOp>,
VectorLoadStoreConversion<vector::StoreOp>,
VectorLoadStoreConversion<vector::MaskedStoreOp>,
VectorGatherOpConversion, VectorScatterOpConversion>(
converter, useVectorAlignment);
patterns.add<VectorBitCastOpConversion, VectorShuffleOpConversion,
VectorExtractOpConversion, VectorFMAOp1DConversion,
VectorInsertOpConversion, VectorPrintOpConversion,
VectorTypeCastOpConversion, VectorScaleOpConversion,
VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
VectorSplatToBroadcast, VectorBroadcastScalarToLowRankLowering,
VectorBroadcastScalarToNdLowering,
VectorScalableInsertOpLowering, VectorScalableExtractOpLowering,
MaskedReductionOpConversion, VectorInterleaveOpLowering,
VectorDeinterleaveOpLowering, VectorFromElementsLowering,
VectorToElementsLowering, VectorScalableStepOpLowering>(
converter);
}
namespace {
struct VectorToLLVMDialectInterface : public ConvertToLLVMPatternInterface {
using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface;
void loadDependentDialects(MLIRContext *context) const final {
context->loadDialect<LLVM::LLVMDialect>();
}
/// Hook for derived dialect interface to provide conversion patterns
/// and mark dialect legal for the conversion target.
void populateConvertToLLVMConversionPatterns(
ConversionTarget &target, LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns) const final {
populateVectorToLLVMConversionPatterns(typeConverter, patterns);
}
};
} // namespace
void mlir::vector::registerConvertVectorToLLVMInterface(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, vector::VectorDialect *dialect) {
dialect->addInterfaces<VectorToLLVMDialectInterface>();
});
}
|