File: three_way.pass.cpp

package info (click to toggle)
llvm-toolchain-snapshot 1%3A22~%2B%2B20251023025710%2B3f47a7be1ae6-1~exp5
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,336,076 kB
  • sloc: cpp: 7,822,956; ansic: 1,531,523; asm: 1,088,291; python: 260,779; f90: 98,765; objc: 70,846; lisp: 47,149; pascal: 17,852; sh: 8,636; ml: 5,111; perl: 4,720; makefile: 3,680; awk: 3,523; javascript: 2,270; xml: 892; fortran: 793
file content (368 lines) | stat: -rw-r--r-- 14,739 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// <tuple>

// template <class... Types> class tuple;

// template<class... TTypes, class... UTypes>
//   auto
//   operator<=>(const tuple<TTypes...>& t, const tuple<UTypes...>& u);
// template<tuple-like UTuple>
//   friend constexpr auto operator<=>(const tuple& t, const UTuple& u); // since C++23

// UNSUPPORTED: c++03, c++11, c++14, c++17

#include "test_macros.h"

TEST_CLANG_DIAGNOSTIC_IGNORED("-Wsign-compare")
TEST_GCC_DIAGNOSTIC_IGNORED("-Wsign-compare")
TEST_MSVC_DIAGNOSTIC_IGNORED(4242 4244)

#include <array>
#include <cassert>
#include <compare>
#include <complex>
#include <limits>
#include <ranges>
#include <tuple>
#include <type_traits> // std::is_constant_evaluated
#include <utility>

// A custom three-way result type
struct CustomEquality {
  friend constexpr bool operator==(const CustomEquality&, int) noexcept { return true; }
  friend constexpr bool operator<(const CustomEquality&, int) noexcept { return false; }
  friend constexpr bool operator<(int, const CustomEquality&) noexcept { return false; }
};

constexpr bool test() {
  struct WeakSpaceship {
    constexpr bool operator==(const WeakSpaceship&) const { return true; }
    constexpr std::weak_ordering operator<=>(const WeakSpaceship&) const { return std::weak_ordering::equivalent; }
  };

  // Empty tuple
  {
    typedef std::tuple<> T0;
    // No member types yields strong ordering (all are equal).
    ASSERT_SAME_TYPE(decltype(T0() <=> T0()), std::strong_ordering);
    assert((T0() <=> T0()) == std::strong_ordering::equal);
  }
  // Mixed types with integers, which compare strongly ordered
  {
    typedef std::tuple<long> T1;
    typedef std::tuple<short> T2;
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
    assert((T1(1) <=> T2(1)) == std::strong_ordering::equal);
    assert((T1(1) <=> T2(0)) == std::strong_ordering::greater);
    assert((T1(1) <=> T2(2)) == std::strong_ordering::less);
  }
  {
    typedef std::tuple<long, unsigned int> T1;
    typedef std::tuple<short, unsigned long> T2;
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
    assert((T1(1, 2) <=> T2(1, 2)) == std::strong_ordering::equal);
    assert((T1(1, 2) <=> T2(0, 2)) == std::strong_ordering::greater);
    assert((T1(1, 2) <=> T2(2, 2)) == std::strong_ordering::less);
    assert((T1(1, 2) <=> T2(1, 1)) == std::strong_ordering::greater);
    assert((T1(1, 2) <=> T2(1, 3)) == std::strong_ordering::less);
  }
  {
    typedef std::tuple<long, int, unsigned short> T1;
    typedef std::tuple<short, long, unsigned int> T2;
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
    assert((T1(1, 2, 3) <=> T2(1, 2, 3)) == std::strong_ordering::equal);
    assert((T1(1, 2, 3) <=> T2(0, 2, 3)) == std::strong_ordering::greater);
    assert((T1(1, 2, 3) <=> T2(2, 2, 3)) == std::strong_ordering::less);
    assert((T1(1, 2, 3) <=> T2(1, 1, 3)) == std::strong_ordering::greater);
    assert((T1(1, 2, 3) <=> T2(1, 3, 3)) == std::strong_ordering::less);
    assert((T1(1, 2, 3) <=> T2(1, 2, 2)) == std::strong_ordering::greater);
    assert((T1(1, 2, 3) <=> T2(1, 2, 4)) == std::strong_ordering::less);
  }
  // Mixed types with floating point, which compare partially ordered
  {
    typedef std::tuple<long> T1;
    typedef std::tuple<double> T2;
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
    assert((T1(1) <=> T2(1)) == std::partial_ordering::equivalent);
    assert((T1(1) <=> T2(0.9)) == std::partial_ordering::greater);
    assert((T1(1) <=> T2(1.1)) == std::partial_ordering::less);
  }
  {
    typedef std::tuple<long, float> T1;
    typedef std::tuple<double, unsigned int> T2;
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
    assert((T1(1, 2) <=> T2(1, 2)) == std::partial_ordering::equivalent);
    assert((T1(1, 2) <=> T2(0.9, 2)) == std::partial_ordering::greater);
    assert((T1(1, 2) <=> T2(1.1, 2)) == std::partial_ordering::less);
    assert((T1(1, 2) <=> T2(1, 1)) == std::partial_ordering::greater);
    assert((T1(1, 2) <=> T2(1, 3)) == std::partial_ordering::less);
  }
  {
    typedef std::tuple<short, float, double> T1;
    typedef std::tuple<double, long, unsigned int> T2;
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
    assert((T1(1, 2, 3) <=> T2(1, 2, 3)) == std::partial_ordering::equivalent);
    assert((T1(1, 2, 3) <=> T2(0.9, 2, 3)) == std::partial_ordering::greater);
    assert((T1(1, 2, 3) <=> T2(1.1, 2, 3)) == std::partial_ordering::less);
    assert((T1(1, 2, 3) <=> T2(1, 1, 3)) == std::partial_ordering::greater);
    assert((T1(1, 2, 3) <=> T2(1, 3, 3)) == std::partial_ordering::less);
    assert((T1(1, 2, 3) <=> T2(1, 2, 2)) == std::partial_ordering::greater);
    assert((T1(1, 2, 3) <=> T2(1, 2, 4)) == std::partial_ordering::less);
  }
  {
    typedef std::tuple<float> T1;
    typedef std::tuple<double> T2;
    constexpr double nan = std::numeric_limits<double>::quiet_NaN();
    // Comparisons with NaN and non-NaN are non-constexpr in GCC, so both sides must be NaN
    assert((T1(nan) <=> T2(nan)) == std::partial_ordering::unordered);
  }
  {
    typedef std::tuple<double, double> T1;
    typedef std::tuple<float, float> T2;
    constexpr double nan = std::numeric_limits<double>::quiet_NaN();
    assert((T1(nan, 2) <=> T2(nan, 2)) == std::partial_ordering::unordered);
    assert((T1(1, nan) <=> T2(1, nan)) == std::partial_ordering::unordered);
  }
  {
    typedef std::tuple<double, float, float> T1;
    typedef std::tuple<double, double, float> T2;
    constexpr double nan = std::numeric_limits<double>::quiet_NaN();
    assert((T1(nan, 2, 3) <=> T2(nan, 2, 3)) == std::partial_ordering::unordered);
    assert((T1(1, nan, 3) <=> T2(1, nan, 3)) == std::partial_ordering::unordered);
    assert((T1(1, 2, nan) <=> T2(1, 2, nan)) == std::partial_ordering::unordered);
  }
  // Ordering classes and synthesized three way comparison
  {
    typedef std::tuple<long, int, unsigned int> T1;
    typedef std::tuple<int, long, unsigned short> T2;
    // All strongly ordered members yields strong ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::strong_ordering);
  }
  {
    typedef std::tuple<int, unsigned int, WeakSpaceship> T1;
    typedef std::tuple<int, unsigned long, WeakSpaceship> T2;
    // Strongly ordered members and a weakly ordered member yields weak ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
  }
  {
    typedef std::tuple<unsigned int, int, WeakSpaceship> T1;
    typedef std::tuple<double, long, WeakSpaceship> T2;
    // Doubles are partially ordered, so one partial, one strong, and one weak ordering
    // yields partial ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
  }
  {
    struct NoSpaceship {
      constexpr bool operator==(const NoSpaceship&) const { return true; }
      constexpr bool operator<(const NoSpaceship&) const { return false; }
    };
    typedef std::tuple<int, unsigned int, NoSpaceship> T1;
    typedef std::tuple<int, unsigned long, NoSpaceship> T2;
    // Strongly ordered members and a weakly ordered member (synthesized) yields weak ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
  }
  {
    struct SpaceshipNoEquals {
      constexpr std::strong_ordering operator<=>(const SpaceshipNoEquals&) const { return std::strong_ordering::equal; }
      constexpr bool operator<(const SpaceshipNoEquals&) const { return false; }
    };
    typedef std::tuple<int, unsigned int, SpaceshipNoEquals> T1;
    typedef std::tuple<int, unsigned long, SpaceshipNoEquals> T2;
    // Spaceship operator with no == operator falls back on the < operator and weak ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
  }
  {
    struct CustomSpaceship {
      constexpr CustomEquality operator<=>(const CustomSpaceship&) const { return CustomEquality(); }
    };
    typedef std::tuple<int, unsigned int, CustomSpaceship> T1;
    typedef std::tuple<short, unsigned long, CustomSpaceship> T2;
    typedef std::tuple<CustomSpaceship> T3;
    // Custom three way return types cannot be used in synthesized three way comparison,
    // but they can be used for (rewritten) operator< when synthesizing a weak ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
    ASSERT_SAME_TYPE(decltype(T3() <=> T3()), std::weak_ordering);
  }
  {
    typedef std::tuple<long, int> T1;
    typedef std::tuple<long, unsigned int> T2;
    // Even with the warning suppressed (-Wno-sign-compare) there should still be no <=> operator
    // between signed and unsigned types, so we should end up with a synthesized weak ordering.
    ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::weak_ordering);
  }

#ifdef TEST_COMPILER_GCC
  // GCC cannot evaluate NaN @ non-NaN constexpr, so test that runtime-only.
  if (!std::is_constant_evaluated())
#endif
  {
    {
      typedef std::tuple<double> T1;
      typedef std::tuple<int> T2;
      constexpr double nan = std::numeric_limits<double>::quiet_NaN();
      ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
      assert((T1(nan) <=> T2(1)) == std::partial_ordering::unordered);
    }
    {
      typedef std::tuple<double, double> T1;
      typedef std::tuple<int, int> T2;
      constexpr double nan = std::numeric_limits<double>::quiet_NaN();
      ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
      assert((T1(nan, 2) <=> T2(1, 2)) == std::partial_ordering::unordered);
      assert((T1(1, nan) <=> T2(1, 2)) == std::partial_ordering::unordered);
    }
    {
      typedef std::tuple<double, double, double> T1;
      typedef std::tuple<int, int, int> T2;
      constexpr double nan = std::numeric_limits<double>::quiet_NaN();
      ASSERT_SAME_TYPE(decltype(T1() <=> T2()), std::partial_ordering);
      assert((T1(nan, 2, 3) <=> T2(1, 2, 3)) == std::partial_ordering::unordered);
      assert((T1(1, nan, 3) <=> T2(1, 2, 3)) == std::partial_ordering::unordered);
      assert((T1(1, 2, nan) <=> T2(1, 2, 3)) == std::partial_ordering::unordered);
    }
  }

// Heterogeneous comparisons enabled by P2165R4.
#if TEST_STD_VER >= 23
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::pair<int, long>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1, 2};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::equal);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::pair<int, long>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1, 0};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::greater);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::pair<double, long>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.1, 3};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::less);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::pair<double, long>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.0, 2};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::equivalent);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::pair<double, long>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.1, 3};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::less);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::array<double, 2>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.0, 2.0};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::equivalent);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::array<double, 2>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.1, 3.0};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::less);
  }
  {
    using T1 = std::tuple<const int*, const int*>;
    using T2 = std::ranges::subrange<const int*>;

    int arr[1]{};
    T1 t1{arr, arr + 1};
    T2 t2{arr};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::equal);
  }
  {
    using T1 = std::tuple<const int*, const int*>;
    using T2 = std::ranges::subrange<const int*>;

    int arr[1]{};
    T1 t1{arr + 1, arr + 1};
    T2 t2{arr};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::greater);
  }
  {
    constexpr std::tuple<WeakSpaceship, WeakSpaceship> t1{};
    constexpr std::pair<WeakSpaceship, WeakSpaceship> t2{};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::weak_ordering);
    assert((t1 <=> t2) == std::weak_ordering::equivalent);
  }
  {
    constexpr std::tuple<WeakSpaceship, WeakSpaceship> t1{};
    constexpr std::array<WeakSpaceship, 2> t2{};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::weak_ordering);
    assert((t1 <=> t2) == std::weak_ordering::equivalent);
  }
  {
    constexpr std::tuple<> t1{};
    constexpr std::array<int*, 0> t2{};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::equal);
  }
  {
    constexpr std::tuple<> t1{};
    constexpr std::array<double, 0> t2{};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::equal);
  }
  {
    constexpr std::tuple<> t1{};
    constexpr std::array<WeakSpaceship, 0> t2{};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::strong_ordering);
    assert((t1 <=> t2) == std::strong_ordering::equal);
  }
#endif
#if TEST_STD_VER >= 26
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::complex<double>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.0, 2.0};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::equivalent);
  }
  {
    using T1 = std::tuple<long, int>;
    using T2 = std::complex<double>;
    constexpr T1 t1{1, 2};
    constexpr T2 t2{1.1, 3.0};
    ASSERT_SAME_TYPE(decltype(t1 <=> t2), std::partial_ordering);
    assert((t1 <=> t2) == std::partial_ordering::less);
  }
#endif

  return true;
}

int main(int, char**) {
  test();
  static_assert(test());

  return 0;
}