1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
// This file implements a crude C++11 based thread pool.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ThreadPool.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/ExponentialBackoff.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
ThreadPoolInterface::~ThreadPoolInterface() = default;
// A note on thread groups: Tasks are by default in no group (represented
// by nullptr ThreadPoolTaskGroup pointer in the Tasks queue) and functionality
// here normally works on all tasks regardless of their group (functions
// in that case receive nullptr ThreadPoolTaskGroup pointer as argument).
// A task in a group has a pointer to that ThreadPoolTaskGroup in the Tasks
// queue, and functions called to work only on tasks from one group take that
// pointer.
#if LLVM_ENABLE_THREADS
StdThreadPool::StdThreadPool(ThreadPoolStrategy S)
: Strategy(S), MaxThreadCount(S.compute_thread_count()) {
if (Strategy.UseJobserver)
TheJobserver = JobserverClient::getInstance();
}
void StdThreadPool::grow(int requested) {
llvm::sys::ScopedWriter LockGuard(ThreadsLock);
if (Threads.size() >= MaxThreadCount)
return; // Already hit the max thread pool size.
int newThreadCount = std::min<int>(requested, MaxThreadCount);
while (static_cast<int>(Threads.size()) < newThreadCount) {
int ThreadID = Threads.size();
Threads.emplace_back([this, ThreadID] {
set_thread_name(formatv("llvm-worker-{0}", ThreadID));
Strategy.apply_thread_strategy(ThreadID);
// Note on jobserver deadlock avoidance:
// GNU Make grants each invoked process one implicit job slot.
// JobserverClient::tryAcquire() returns that implicit slot on the first
// successful call in a process, ensuring forward progress without a
// dedicated "always-on" thread.
if (TheJobserver)
processTasksWithJobserver();
else
processTasks(nullptr);
});
}
}
#ifndef NDEBUG
// The group of the tasks run by the current thread.
static LLVM_THREAD_LOCAL std::vector<ThreadPoolTaskGroup *>
*CurrentThreadTaskGroups = nullptr;
#endif
// WaitingForGroup == nullptr means all tasks regardless of their group.
void StdThreadPool::processTasks(ThreadPoolTaskGroup *WaitingForGroup) {
while (true) {
std::function<void()> Task;
ThreadPoolTaskGroup *GroupOfTask;
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
bool workCompletedForGroup = false; // Result of workCompletedUnlocked()
// Wait for tasks to be pushed in the queue
QueueCondition.wait(LockGuard, [&] {
return !EnableFlag || !Tasks.empty() ||
(WaitingForGroup != nullptr &&
(workCompletedForGroup =
workCompletedUnlocked(WaitingForGroup)));
});
// Exit condition
if (!EnableFlag && Tasks.empty())
return;
if (WaitingForGroup != nullptr && workCompletedForGroup)
return;
// Yeah, we have a task, grab it and release the lock on the queue
// We first need to signal that we are active before popping the queue
// in order for wait() to properly detect that even if the queue is
// empty, there is still a task in flight.
++ActiveThreads;
Task = std::move(Tasks.front().first);
GroupOfTask = Tasks.front().second;
// Need to count active threads in each group separately, ActiveThreads
// would never be 0 if waiting for another group inside a wait.
if (GroupOfTask != nullptr)
++ActiveGroups[GroupOfTask]; // Increment or set to 1 if new item
Tasks.pop_front();
}
#ifndef NDEBUG
if (CurrentThreadTaskGroups == nullptr)
CurrentThreadTaskGroups = new std::vector<ThreadPoolTaskGroup *>;
CurrentThreadTaskGroups->push_back(GroupOfTask);
#endif
// Run the task we just grabbed
Task();
#ifndef NDEBUG
CurrentThreadTaskGroups->pop_back();
if (CurrentThreadTaskGroups->empty()) {
delete CurrentThreadTaskGroups;
CurrentThreadTaskGroups = nullptr;
}
#endif
bool Notify;
bool NotifyGroup;
{
// Adjust `ActiveThreads`, in case someone waits on StdThreadPool::wait()
std::lock_guard<std::mutex> LockGuard(QueueLock);
--ActiveThreads;
if (GroupOfTask != nullptr) {
auto A = ActiveGroups.find(GroupOfTask);
if (--(A->second) == 0)
ActiveGroups.erase(A);
}
Notify = workCompletedUnlocked(GroupOfTask);
NotifyGroup = GroupOfTask != nullptr && Notify;
}
// Notify task completion if this is the last active thread, in case
// someone waits on StdThreadPool::wait().
if (Notify)
CompletionCondition.notify_all();
// If this was a task in a group, notify also threads waiting for tasks
// in this function on QueueCondition, to make a recursive wait() return
// after the group it's been waiting for has finished.
if (NotifyGroup)
QueueCondition.notify_all();
}
}
/// Main loop for worker threads when using a jobserver.
/// This function uses a two-level queue; it first acquires a job slot from the
/// external jobserver, then retrieves a task from the internal queue.
/// This allows the thread pool to cooperate with build systems like `make -j`.
void StdThreadPool::processTasksWithJobserver() {
while (true) {
// Acquire a job slot from the external jobserver.
// This polls for a slot and yields the thread to avoid a high-CPU wait.
JobSlot Slot;
// The timeout for the backoff can be very long, as the shutdown
// is checked on each iteration. The sleep duration is capped by MaxWait
// in ExponentialBackoff, so shutdown latency is not a problem.
ExponentialBackoff Backoff(std::chrono::hours(24));
bool AcquiredToken = false;
do {
// Return if the thread pool is shutting down.
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
if (!EnableFlag)
return;
}
Slot = TheJobserver->tryAcquire();
if (Slot.isValid()) {
AcquiredToken = true;
break;
}
} while (Backoff.waitForNextAttempt());
if (!AcquiredToken) {
// This is practically unreachable with a 24h timeout and indicates a
// deeper problem if hit.
report_fatal_error("Timed out waiting for jobserver token.");
}
// `make_scope_exit` guarantees the job slot is released, even if the
// task throws or we exit early. This prevents deadlocking the build.
auto SlotReleaser =
make_scope_exit([&] { TheJobserver->release(std::move(Slot)); });
// While we hold a job slot, process tasks from the internal queue.
while (true) {
std::function<void()> Task;
ThreadPoolTaskGroup *GroupOfTask = nullptr;
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
// Wait until a task is available or the pool is shutting down.
QueueCondition.wait(LockGuard,
[&] { return !EnableFlag || !Tasks.empty(); });
// If shutting down and the queue is empty, the thread can terminate.
if (!EnableFlag && Tasks.empty())
return;
// If the queue is empty, we're done processing tasks for now.
// Break the inner loop to release the job slot.
if (Tasks.empty())
break;
// A task is available. Mark it as active before releasing the lock
// to prevent race conditions with `wait()`.
++ActiveThreads;
Task = std::move(Tasks.front().first);
GroupOfTask = Tasks.front().second;
if (GroupOfTask != nullptr)
++ActiveGroups[GroupOfTask];
Tasks.pop_front();
} // The queue lock is released.
// Run the task. The job slot remains acquired during execution.
Task();
// The task has finished. Update the active count and notify any waiters.
{
std::lock_guard<std::mutex> LockGuard(QueueLock);
--ActiveThreads;
if (GroupOfTask != nullptr) {
auto A = ActiveGroups.find(GroupOfTask);
if (--(A->second) == 0)
ActiveGroups.erase(A);
}
// If all tasks are complete, notify any waiting threads.
if (workCompletedUnlocked(nullptr))
CompletionCondition.notify_all();
}
}
}
}
bool StdThreadPool::workCompletedUnlocked(ThreadPoolTaskGroup *Group) const {
if (Group == nullptr)
return !ActiveThreads && Tasks.empty();
return ActiveGroups.count(Group) == 0 &&
!llvm::is_contained(llvm::make_second_range(Tasks), Group);
}
void StdThreadPool::wait() {
assert(!isWorkerThread()); // Would deadlock waiting for itself.
// Wait for all threads to complete and the queue to be empty
std::unique_lock<std::mutex> LockGuard(QueueLock);
CompletionCondition.wait(LockGuard,
[&] { return workCompletedUnlocked(nullptr); });
}
void StdThreadPool::wait(ThreadPoolTaskGroup &Group) {
// Wait for all threads in the group to complete.
if (!isWorkerThread()) {
std::unique_lock<std::mutex> LockGuard(QueueLock);
CompletionCondition.wait(LockGuard,
[&] { return workCompletedUnlocked(&Group); });
return;
}
// Make sure to not deadlock waiting for oneself.
assert(CurrentThreadTaskGroups == nullptr ||
!llvm::is_contained(*CurrentThreadTaskGroups, &Group));
// Handle the case of recursive call from another task in a different group,
// in which case process tasks while waiting to keep the thread busy and avoid
// possible deadlock.
processTasks(&Group);
}
bool StdThreadPool::isWorkerThread() const {
llvm::sys::ScopedReader LockGuard(ThreadsLock);
llvm::thread::id CurrentThreadId = llvm::this_thread::get_id();
for (const llvm::thread &Thread : Threads)
if (CurrentThreadId == Thread.get_id())
return true;
return false;
}
// The destructor joins all threads, waiting for completion.
StdThreadPool::~StdThreadPool() {
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
EnableFlag = false;
}
QueueCondition.notify_all();
llvm::sys::ScopedReader LockGuard(ThreadsLock);
for (auto &Worker : Threads)
Worker.join();
}
#endif // LLVM_ENABLE_THREADS Disabled
// No threads are launched, issue a warning if ThreadCount is not 0
SingleThreadExecutor::SingleThreadExecutor(ThreadPoolStrategy S) {
int ThreadCount = S.compute_thread_count();
if (ThreadCount != 1) {
errs() << "Warning: request a ThreadPool with " << ThreadCount
<< " threads, but LLVM_ENABLE_THREADS has been turned off\n";
}
}
void SingleThreadExecutor::wait() {
// Sequential implementation running the tasks
while (!Tasks.empty()) {
auto Task = std::move(Tasks.front().first);
Tasks.pop_front();
Task();
}
}
void SingleThreadExecutor::wait(ThreadPoolTaskGroup &) {
// Simply wait for all, this works even if recursive (the running task
// is already removed from the queue).
wait();
}
bool SingleThreadExecutor::isWorkerThread() const {
report_fatal_error("LLVM compiled without multithreading");
}
SingleThreadExecutor::~SingleThreadExecutor() { wait(); }
|