1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
|
//===-- NativeRegisterContextLinux_arm64.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#if defined(__arm64__) || defined(__aarch64__)
#include "NativeRegisterContextLinux_arm64.h"
#include "NativeRegisterContextLinux_arm.h"
#include "NativeRegisterContextLinux_arm64dbreg.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Host/common/NativeProcessProtocol.h"
#include "lldb/Host/linux/Ptrace.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/MemoryTagManagerAArch64MTE.h"
#include "Plugins/Process/Utility/RegisterFlagsDetector_arm64.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h"
// System includes - They have to be included after framework includes because
// they define some macros which collide with variable names in other modules
#include <sys/uio.h>
// NT_PRSTATUS and NT_FPREGSET definition
#include <elf.h>
#include <mutex>
#include <optional>
#ifndef NT_ARM_SVE
#define NT_ARM_SVE 0x405 /* ARM Scalable Vector Extension */
#endif
#ifndef NT_ARM_SSVE
#define NT_ARM_SSVE \
0x40b /* ARM Scalable Matrix Extension, Streaming SVE mode */
#endif
#ifndef NT_ARM_ZA
#define NT_ARM_ZA 0x40c /* ARM Scalable Matrix Extension, Array Storage */
#endif
#ifndef NT_ARM_ZT
#define NT_ARM_ZT \
0x40d /* ARM Scalable Matrix Extension 2, lookup table register */
#endif
#ifndef NT_ARM_PAC_MASK
#define NT_ARM_PAC_MASK 0x406 /* Pointer authentication code masks */
#endif
#ifndef NT_ARM_TAGGED_ADDR_CTRL
#define NT_ARM_TAGGED_ADDR_CTRL 0x409 /* Tagged address control register */
#endif
#ifndef NT_ARM_FPMR
#define NT_ARM_FPMR 0x40e /* Floating point mode register */
#endif
#ifndef NT_ARM_GCS
#define NT_ARM_GCS 0x410 /* Guarded Control Stack control registers */
#endif
#define HWCAP_PACA (1 << 30)
#define HWCAP_GCS (1UL << 32)
#define HWCAP2_MTE (1 << 18)
#define HWCAP2_FPMR (1UL << 48)
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;
// A NativeRegisterContext is constructed per thread, but all threads' registers
// will contain the same fields. Therefore this mutex prevents each instance
// competing with the other, and subsequent instances from having to detect the
// fields all over again.
static std::mutex g_register_flags_detector_mutex;
static Arm64RegisterFlagsDetector g_register_flags_detector;
std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
const ArchSpec &target_arch, NativeThreadLinux &native_thread) {
switch (target_arch.GetMachine()) {
case llvm::Triple::arm:
return std::make_unique<NativeRegisterContextLinux_arm>(target_arch,
native_thread);
case llvm::Triple::aarch64: {
// Configure register sets supported by this AArch64 target.
// Read SVE header to check for SVE support.
struct sve::user_sve_header sve_header;
struct iovec ioVec;
ioVec.iov_base = &sve_header;
ioVec.iov_len = sizeof(sve_header);
unsigned int regset = NT_ARM_SVE;
Flags opt_regsets;
if (NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET,
native_thread.GetID(), ®set,
&ioVec, sizeof(sve_header))
.Success()) {
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskSVE);
// We may also have the Scalable Matrix Extension (SME) which adds a
// streaming SVE mode.
ioVec.iov_len = sizeof(sve_header);
regset = NT_ARM_SSVE;
if (NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET,
native_thread.GetID(), ®set,
&ioVec, sizeof(sve_header))
.Success())
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskSSVE);
}
sve::user_za_header za_header;
ioVec.iov_base = &za_header;
ioVec.iov_len = sizeof(za_header);
regset = NT_ARM_ZA;
if (NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET,
native_thread.GetID(), ®set,
&ioVec, sizeof(za_header))
.Success())
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskZA);
// SME's ZT0 is a 512 bit register.
std::array<uint8_t, 64> zt_reg;
ioVec.iov_base = zt_reg.data();
ioVec.iov_len = zt_reg.size();
regset = NT_ARM_ZT;
if (NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET,
native_thread.GetID(), ®set,
&ioVec, zt_reg.size())
.Success())
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskZT);
NativeProcessLinux &process = native_thread.GetProcess();
std::optional<uint64_t> auxv_at_hwcap =
process.GetAuxValue(AuxVector::AUXV_AT_HWCAP);
if (auxv_at_hwcap && (*auxv_at_hwcap & HWCAP_PACA))
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskPAuth);
std::optional<uint64_t> auxv_at_hwcap2 =
process.GetAuxValue(AuxVector::AUXV_AT_HWCAP2);
if (auxv_at_hwcap2) {
if (*auxv_at_hwcap2 & HWCAP2_MTE)
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskMTE);
if (*auxv_at_hwcap2 & HWCAP2_FPMR)
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskFPMR);
if (*auxv_at_hwcap & HWCAP_GCS)
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskGCS);
}
opt_regsets.Set(RegisterInfoPOSIX_arm64::eRegsetMaskTLS);
std::optional<uint64_t> auxv_at_hwcap3 =
process.GetAuxValue(AuxVector::AUXV_AT_HWCAP3);
std::lock_guard<std::mutex> lock(g_register_flags_detector_mutex);
if (!g_register_flags_detector.HasDetected())
g_register_flags_detector.DetectFields(auxv_at_hwcap.value_or(0),
auxv_at_hwcap2.value_or(0),
auxv_at_hwcap3.value_or(0));
auto register_info_up =
std::make_unique<RegisterInfoPOSIX_arm64>(target_arch, opt_regsets);
return std::make_unique<NativeRegisterContextLinux_arm64>(
target_arch, native_thread, std::move(register_info_up));
}
default:
llvm_unreachable("have no register context for architecture");
}
}
llvm::Expected<ArchSpec>
NativeRegisterContextLinux::DetermineArchitecture(lldb::tid_t tid) {
return DetermineArchitectureViaGPR(
tid, RegisterInfoPOSIX_arm64::GetGPRSizeStatic());
}
NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64(
const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
std::unique_ptr<RegisterInfoPOSIX_arm64> register_info_up)
: NativeRegisterContextRegisterInfo(native_thread,
register_info_up.release()),
NativeRegisterContextLinux(native_thread) {
g_register_flags_detector.UpdateRegisterInfo(
GetRegisterInfoInterface().GetRegisterInfo(),
GetRegisterInfoInterface().GetRegisterCount());
::memset(&m_fpr, 0, sizeof(m_fpr));
::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64));
::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
::memset(&m_hbp_regs, 0, sizeof(m_hbp_regs));
::memset(&m_sve_header, 0, sizeof(m_sve_header));
::memset(&m_pac_mask, 0, sizeof(m_pac_mask));
::memset(&m_tls_regs, 0, sizeof(m_tls_regs));
::memset(&m_sme_pseudo_regs, 0, sizeof(m_sme_pseudo_regs));
::memset(&m_gcs_regs, 0, sizeof(m_gcs_regs));
std::fill(m_zt_reg.begin(), m_zt_reg.end(), 0);
m_mte_ctrl_reg = 0;
m_fpmr_reg = 0;
// 16 is just a maximum value, query hardware for actual watchpoint count
m_max_hwp_supported = 16;
m_max_hbp_supported = 16;
m_refresh_hwdebug_info = true;
m_gpr_is_valid = false;
m_fpu_is_valid = false;
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
m_pac_mask_is_valid = false;
m_mte_ctrl_is_valid = false;
m_tls_is_valid = false;
m_zt_buffer_is_valid = false;
m_fpmr_is_valid = false;
m_gcs_is_valid = false;
// SME adds the tpidr2 register
m_tls_size = GetRegisterInfo().IsSSVEPresent() ? sizeof(m_tls_regs)
: sizeof(m_tls_regs.tpidr_reg);
if (GetRegisterInfo().IsSVEPresent() || GetRegisterInfo().IsSSVEPresent())
m_sve_state = SVEState::Unknown;
else
m_sve_state = SVEState::Disabled;
}
RegisterInfoPOSIX_arm64 &
NativeRegisterContextLinux_arm64::GetRegisterInfo() const {
return static_cast<RegisterInfoPOSIX_arm64 &>(*m_register_info_interface_up);
}
uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const {
return GetRegisterInfo().GetRegisterSetCount();
}
const RegisterSet *
NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const {
return GetRegisterInfo().GetRegisterSet(set_index);
}
uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const {
uint32_t count = 0;
for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index)
count += GetRegisterSet(set_index)->num_registers;
return count;
}
Status
NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info,
RegisterValue ®_value) {
Status error;
if (!reg_info) {
error = Status::FromErrorString("reg_info NULL");
return error;
}
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
if (reg == LLDB_INVALID_REGNUM)
return Status::FromErrorStringWithFormat(
"no lldb regnum for %s",
reg_info && reg_info->name ? reg_info->name : "<unknown register>");
uint8_t *src;
uint32_t offset = LLDB_INVALID_INDEX32;
uint64_t sve_vg;
std::vector<uint8_t> sve_reg_non_live;
if (IsGPR(reg)) {
error = ReadGPR();
if (error.Fail())
return error;
offset = reg_info->byte_offset;
assert(offset < GetGPRSize());
src = (uint8_t *)GetGPRBuffer() + offset;
} else if (IsFPR(reg)) {
if (m_sve_state == SVEState::Disabled) {
// SVE is disabled take legacy route for FPU register access
error = ReadFPR();
if (error.Fail())
return error;
offset = CalculateFprOffset(reg_info);
assert(offset < GetFPRSize());
src = (uint8_t *)GetFPRBuffer() + offset;
} else {
// SVE or SSVE enabled, we will read and cache SVE ptrace data.
// In SIMD or Full mode, the data comes from the SVE regset. In streaming
// mode it comes from the streaming SVE regset.
error = ReadAllSVE();
if (error.Fail())
return error;
// FPSR and FPCR will be located right after Z registers in
// SVEState::FPSIMD while in SVEState::Full or SVEState::Streaming they
// will be located at the end of register data after an alignment
// correction based on currently selected vector length.
uint32_t sve_reg_num = LLDB_INVALID_REGNUM;
if (reg == GetRegisterInfo().GetRegNumFPSR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full || m_sve_state == SVEState::Streaming)
offset = sve::PTraceFPSROffset(sve::vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = sve::ptrace_fpsimd_offset + (32 * 16);
} else if (reg == GetRegisterInfo().GetRegNumFPCR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full || m_sve_state == SVEState::Streaming)
offset = sve::PTraceFPCROffset(sve::vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = sve::ptrace_fpsimd_offset + (32 * 16) + 4;
} else {
// Extract SVE Z register value register number for this reg_info
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM)
sve_reg_num = reg_info->value_regs[0];
offset = CalculateSVEOffset(GetRegisterInfoAtIndex(sve_reg_num));
}
assert(offset < GetSVEBufferSize());
src = (uint8_t *)GetSVEBuffer() + offset;
}
} else if (IsTLS(reg)) {
error = ReadTLS();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetTLSOffset();
assert(offset < GetTLSBufferSize());
src = (uint8_t *)GetTLSBuffer() + offset;
} else if (IsSVE(reg)) {
if (m_sve_state == SVEState::Disabled || m_sve_state == SVEState::Unknown)
return Status::FromErrorString("SVE disabled or not supported");
if (GetRegisterInfo().IsSVERegVG(reg)) {
sve_vg = GetSVERegVG();
src = (uint8_t *)&sve_vg;
} else {
// SVE enabled, we will read and cache SVE ptrace data
error = ReadAllSVE();
if (error.Fail())
return error;
if (m_sve_state == SVEState::FPSIMD) {
// In FPSIMD state SVE payload mirrors legacy fpsimd struct and so
// just copy 16 bytes of v register to the start of z register. All
// other SVE register will be set to zero.
sve_reg_non_live.resize(reg_info->byte_size, 0);
src = sve_reg_non_live.data();
if (GetRegisterInfo().IsSVEZReg(reg)) {
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
::memcpy(sve_reg_non_live.data(), (uint8_t *)GetSVEBuffer() + offset,
16);
}
} else {
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
src = (uint8_t *)GetSVEBuffer() + offset;
}
}
} else if (IsPAuth(reg)) {
error = ReadPAuthMask();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetPAuthOffset();
assert(offset < GetPACMaskSize());
src = (uint8_t *)GetPACMask() + offset;
} else if (IsMTE(reg)) {
error = ReadMTEControl();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetMTEOffset();
assert(offset < GetMTEControlSize());
src = (uint8_t *)GetMTEControl() + offset;
} else if (IsSME(reg)) {
if (GetRegisterInfo().IsSMERegZA(reg)) {
error = ReadZAHeader();
if (error.Fail())
return error;
// If there is only a header and no registers, ZA is inactive. Read as 0
// in this case.
if (m_za_header.size == sizeof(m_za_header)) {
// This will get reconfigured/reset later, so we are safe to use it.
// ZA is a square of VL * VL and the ptrace buffer also includes the
// header itself.
m_za_ptrace_payload.resize(((m_za_header.vl) * (m_za_header.vl)) +
GetZAHeaderSize());
std::fill(m_za_ptrace_payload.begin(), m_za_ptrace_payload.end(), 0);
} else {
// ZA is active, read the real register.
error = ReadZA();
if (error.Fail())
return error;
}
// ZA is part of the SME set but uses a separate member buffer for
// storage. Therefore its effective byte offset is always 0 even if it
// isn't 0 within the SME register set.
src = (uint8_t *)GetZABuffer() + GetZAHeaderSize();
} else if (GetRegisterInfo().IsSMERegZT(reg)) {
// Unlike ZA, the kernel will return register data for ZT0 when ZA is not
// enabled. This data will be all 0s so we don't have to invent anything
// like we did for ZA.
error = ReadZT();
if (error.Fail())
return error;
src = (uint8_t *)GetZTBuffer();
} else {
error = ReadSMESVG();
if (error.Fail())
return error;
// This is a psuedo so it never fails.
ReadSMEControl();
offset = reg_info->byte_offset - GetRegisterInfo().GetSMEOffset();
assert(offset < GetSMEPseudoBufferSize());
src = (uint8_t *)GetSMEPseudoBuffer() + offset;
}
} else if (IsFPMR(reg)) {
error = ReadFPMR();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetFPMROffset();
assert(offset < GetFPMRBufferSize());
src = (uint8_t *)GetFPMRBuffer() + offset;
} else if (IsGCS(reg)) {
error = ReadGCS();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetGCSOffset();
assert(offset < GetGCSBufferSize());
src = (uint8_t *)GetGCSBuffer() + offset;
} else
return Status::FromErrorString(
"failed - register wasn't recognized to be a GPR or an FPR, "
"write strategy unknown");
reg_value.SetFromMemoryData(*reg_info, src, reg_info->byte_size,
eByteOrderLittle, error);
return error;
}
Status NativeRegisterContextLinux_arm64::WriteRegister(
const RegisterInfo *reg_info, const RegisterValue ®_value) {
Status error;
if (!reg_info)
return Status::FromErrorString("reg_info NULL");
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
if (reg == LLDB_INVALID_REGNUM)
return Status::FromErrorStringWithFormat(
"no lldb regnum for %s",
reg_info && reg_info->name ? reg_info->name : "<unknown register>");
uint8_t *dst;
uint32_t offset = LLDB_INVALID_INDEX32;
std::vector<uint8_t> sve_reg_non_live;
if (IsGPR(reg)) {
error = ReadGPR();
if (error.Fail())
return error;
assert(reg_info->byte_offset < GetGPRSize());
dst = (uint8_t *)GetGPRBuffer() + reg_info->byte_offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteGPR();
} else if (IsFPR(reg)) {
if (m_sve_state == SVEState::Disabled) {
// SVE is disabled take legacy route for FPU register access
error = ReadFPR();
if (error.Fail())
return error;
offset = CalculateFprOffset(reg_info);
assert(offset < GetFPRSize());
dst = (uint8_t *)GetFPRBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteFPR();
} else {
// SVE enabled, we will read and cache SVE ptrace data.
error = ReadAllSVE();
if (error.Fail())
return error;
// FPSR and FPCR will be located right after Z registers in
// SVEState::FPSIMD while in SVEState::Full or SVEState::Streaming they
// will be located at the end of register data after an alignment
// correction based on currently selected vector length.
uint32_t sve_reg_num = LLDB_INVALID_REGNUM;
if (reg == GetRegisterInfo().GetRegNumFPSR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full || m_sve_state == SVEState::Streaming)
offset = sve::PTraceFPSROffset(sve::vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = sve::ptrace_fpsimd_offset + (32 * 16);
} else if (reg == GetRegisterInfo().GetRegNumFPCR()) {
sve_reg_num = reg;
if (m_sve_state == SVEState::Full || m_sve_state == SVEState::Streaming)
offset = sve::PTraceFPCROffset(sve::vq_from_vl(m_sve_header.vl));
else if (m_sve_state == SVEState::FPSIMD)
offset = sve::ptrace_fpsimd_offset + (32 * 16) + 4;
} else {
// Extract SVE Z register value register number for this reg_info
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM)
sve_reg_num = reg_info->value_regs[0];
offset = CalculateSVEOffset(GetRegisterInfoAtIndex(sve_reg_num));
}
assert(offset < GetSVEBufferSize());
dst = (uint8_t *)GetSVEBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteAllSVE();
}
} else if (IsSVE(reg)) {
if (m_sve_state == SVEState::Disabled || m_sve_state == SVEState::Unknown)
return Status::FromErrorString("SVE disabled or not supported");
else {
// Target has SVE enabled, we will read and cache SVE ptrace data
error = ReadAllSVE();
if (error.Fail())
return error;
if (GetRegisterInfo().IsSVERegVG(reg)) {
uint64_t vg_value = reg_value.GetAsUInt64();
if (sve::vl_valid(vg_value * 8)) {
if (m_sve_header_is_valid && vg_value == GetSVERegVG())
return error;
SetSVERegVG(vg_value);
error = WriteSVEHeader();
if (error.Success()) {
// Changing VG during streaming mode also changes the size of ZA.
if (m_sve_state == SVEState::Streaming)
m_za_header_is_valid = false;
ConfigureRegisterContext();
}
if (m_sve_header_is_valid && vg_value == GetSVERegVG())
return error;
}
return Status::FromErrorString("SVE vector length update failed.");
}
// If target supports SVE but currently in FPSIMD mode.
if (m_sve_state == SVEState::FPSIMD) {
// Here we will check if writing this SVE register enables
// SVEState::Full
bool set_sve_state_full = false;
const uint8_t *reg_bytes = (const uint8_t *)reg_value.GetBytes();
if (GetRegisterInfo().IsSVEZReg(reg)) {
for (uint32_t i = 16; i < reg_info->byte_size; i++) {
if (reg_bytes[i]) {
set_sve_state_full = true;
break;
}
}
} else if (GetRegisterInfo().IsSVEPReg(reg) ||
reg == GetRegisterInfo().GetRegNumSVEFFR()) {
for (uint32_t i = 0; i < reg_info->byte_size; i++) {
if (reg_bytes[i]) {
set_sve_state_full = true;
break;
}
}
}
if (!set_sve_state_full && GetRegisterInfo().IsSVEZReg(reg)) {
// We are writing a Z register which is zero beyond 16 bytes so copy
// first 16 bytes only as SVE payload mirrors legacy fpsimd structure
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
dst = (uint8_t *)GetSVEBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), 16);
return WriteAllSVE();
} else
return Status::FromErrorString(
"SVE state change operation not supported");
} else {
offset = CalculateSVEOffset(reg_info);
assert(offset < GetSVEBufferSize());
dst = (uint8_t *)GetSVEBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteAllSVE();
}
}
} else if (IsMTE(reg)) {
error = ReadMTEControl();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetMTEOffset();
assert(offset < GetMTEControlSize());
dst = (uint8_t *)GetMTEControl() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteMTEControl();
} else if (IsTLS(reg)) {
error = ReadTLS();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetTLSOffset();
assert(offset < GetTLSBufferSize());
dst = (uint8_t *)GetTLSBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteTLS();
} else if (IsSME(reg)) {
if (GetRegisterInfo().IsSMERegZA(reg)) {
error = ReadZA();
if (error.Fail())
return error;
// ZA is part of the SME set but not stored with the other SME registers.
// So its byte offset is effectively always 0.
dst = (uint8_t *)GetZABuffer() + GetZAHeaderSize();
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
// While this is writing a header that contains a vector length, the only
// way to change that is via the vg register. So here we assume the length
// will always be the current length and no reconfigure is needed.
return WriteZA();
} else if (GetRegisterInfo().IsSMERegZT(reg)) {
error = ReadZT();
if (error.Fail())
return error;
dst = (uint8_t *)GetZTBuffer();
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteZT();
} else
return Status::FromErrorString(
"Writing to SVG or SVCR is not supported.");
} else if (IsFPMR(reg)) {
error = ReadFPMR();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetFPMROffset();
assert(offset < GetFPMRBufferSize());
dst = (uint8_t *)GetFPMRBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteFPMR();
} else if (IsGCS(reg)) {
error = ReadGCS();
if (error.Fail())
return error;
offset = reg_info->byte_offset - GetRegisterInfo().GetGCSOffset();
assert(offset < GetGCSBufferSize());
dst = (uint8_t *)GetGCSBuffer() + offset;
::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size);
return WriteGCS();
}
return Status::FromErrorString("Failed to write register value");
}
enum RegisterSetType : uint32_t {
GPR,
SVE, // Used for SVE and SSVE.
FPR, // When there is no SVE, or SVE in FPSIMD mode.
// Pointer authentication registers are read only, so not included here.
MTE,
TLS,
SME, // ZA only, because SVCR and SVG are pseudo registers.
SME2, // ZT only.
FPMR,
GCS, // Guarded Control Stack registers.
};
static uint8_t *AddRegisterSetType(uint8_t *dst,
RegisterSetType register_set_type) {
*(reinterpret_cast<uint32_t *>(dst)) = register_set_type;
return dst + sizeof(uint32_t);
}
static uint8_t *AddSavedRegistersData(uint8_t *dst, void *src, size_t size) {
::memcpy(dst, src, size);
return dst + size;
}
static uint8_t *AddSavedRegisters(uint8_t *dst,
enum RegisterSetType register_set_type,
void *src, size_t size) {
dst = AddRegisterSetType(dst, register_set_type);
return AddSavedRegistersData(dst, src, size);
}
Status
NativeRegisterContextLinux_arm64::CacheAllRegisters(uint32_t &cached_size) {
Status error;
cached_size = sizeof(RegisterSetType) + GetGPRBufferSize();
error = ReadGPR();
if (error.Fail())
return error;
if (GetRegisterInfo().IsZAPresent()) {
error = ReadZAHeader();
if (error.Fail())
return error;
// Use header size here because the buffer may contain fake data when ZA is
// disabled. We do not want to write this fake data (all 0s) because this
// would tell the kernel that we want ZA to become active. Which is the
// opposite of what we want in the case where it is currently inactive.
cached_size += sizeof(RegisterSetType) + m_za_header.size;
// For the same reason, we need to force it to be re-read so that it will
// always contain the real header.
m_za_buffer_is_valid = false;
error = ReadZA();
if (error.Fail())
return error;
// We will only be restoring ZT data if ZA is active. As writing to an
// inactive ZT enables ZA, which may not be desireable.
if (
// If we have ZT0, or in other words, if we have SME2.
GetRegisterInfo().IsZTPresent() &&
// And ZA is active, which means that ZT0 is also active.
m_za_header.size > sizeof(m_za_header)) {
cached_size += sizeof(RegisterSetType) + GetZTBufferSize();
// The kernel handles an inactive ZT0 for us, and it will read as 0s if
// inactive (unlike ZA where we fake that behaviour).
error = ReadZT();
if (error.Fail())
return error;
}
}
// If SVE is enabled we need not copy FPR separately.
if (GetRegisterInfo().IsSVEPresent() || GetRegisterInfo().IsSSVEPresent()) {
// Store mode and register data.
cached_size +=
sizeof(RegisterSetType) + sizeof(m_sve_state) + GetSVEBufferSize();
error = ReadAllSVE();
} else {
cached_size += sizeof(RegisterSetType) + GetFPRSize();
error = ReadFPR();
}
if (error.Fail())
return error;
if (GetRegisterInfo().IsMTEPresent()) {
cached_size += sizeof(RegisterSetType) + GetMTEControlSize();
error = ReadMTEControl();
if (error.Fail())
return error;
}
if (GetRegisterInfo().IsFPMRPresent()) {
cached_size += sizeof(RegisterSetType) + GetFPMRBufferSize();
error = ReadFPMR();
if (error.Fail())
return error;
}
if (GetRegisterInfo().IsGCSPresent()) {
cached_size += sizeof(RegisterSetType) + GetGCSBufferSize();
error = ReadGCS();
if (error.Fail())
return error;
}
// tpidr is always present but tpidr2 depends on SME.
cached_size += sizeof(RegisterSetType) + GetTLSBufferSize();
error = ReadTLS();
return error;
}
Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues(
lldb::WritableDataBufferSP &data_sp) {
// AArch64 register data must contain GPRs and either FPR or SVE registers.
// SVE registers can be non-streaming (aka SVE) or streaming (aka SSVE).
// Finally an optional MTE register. Pointer Authentication (PAC) registers
// are read-only and will be skipped.
// In order to create register data checkpoint we first read all register
// values if not done already and calculate total size of register set data.
// We store all register values in data_sp by copying full PTrace data that
// corresponds to register sets enabled by current register context.
uint32_t reg_data_byte_size = 0;
Status error = CacheAllRegisters(reg_data_byte_size);
if (error.Fail())
return error;
data_sp.reset(new DataBufferHeap(reg_data_byte_size, 0));
uint8_t *dst = data_sp->GetBytes();
dst = AddSavedRegisters(dst, RegisterSetType::GPR, GetGPRBuffer(),
GetGPRBufferSize());
// Streaming SVE and the ZA register both use the streaming vector length.
// When you change this, the kernel will invalidate parts of the process
// state. Therefore we need a specific order of restoration for each mode, if
// we also have ZA to restore.
//
// Streaming mode enabled, ZA enabled:
// * Write streaming registers. This sets SVCR.SM and clears SVCR.ZA.
// * Write ZA, this set SVCR.ZA. The register data we provide is written to
// ZA.
// * Result is SVCR.SM and SVCR.ZA set, with the expected data in both
// register sets.
//
// Streaming mode disabled, ZA enabled:
// * Write ZA. This sets SVCR.ZA, and the ZA content. In the majority of cases
// the streaming vector length is changing, so the thread is converted into
// an FPSIMD thread if it is not already one. This also clears SVCR.SM.
// * Write SVE registers, which also clears SVCR.SM but most importantly, puts
// us into full SVE mode instead of FPSIMD mode (where the registers are
// actually the 128 bit Neon registers).
// * Result is we have SVCR.SM = 0, SVCR.ZA = 1 and the expected register
// state.
//
// Restoring in different orders leads to things like the SVE registers being
// truncated due to the FPSIMD mode and ZA being disabled or filled with 0s
// (disabled and 0s looks the same from inside lldb since we fake the value
// when it's disabled).
//
// For more information on this, look up the uses of the relevant NT_ARM_
// constants and the functions vec_set_vector_length, sve_set_common and
// za_set in the Linux Kernel.
if ((m_sve_state != SVEState::Streaming) && GetRegisterInfo().IsZAPresent()) {
// Use the header size not the buffer size, as we may be using the buffer
// for fake data, which we do not want to write out.
assert(m_za_header.size <= GetZABufferSize());
dst = AddSavedRegisters(dst, RegisterSetType::SME, GetZABuffer(),
m_za_header.size);
}
if (GetRegisterInfo().IsSVEPresent() || GetRegisterInfo().IsSSVEPresent()) {
dst = AddRegisterSetType(dst, RegisterSetType::SVE);
*(reinterpret_cast<SVEState *>(dst)) = m_sve_state;
dst += sizeof(m_sve_state);
dst = AddSavedRegistersData(dst, GetSVEBuffer(), GetSVEBufferSize());
} else {
dst = AddSavedRegisters(dst, RegisterSetType::FPR, GetFPRBuffer(),
GetFPRSize());
}
if ((m_sve_state == SVEState::Streaming) && GetRegisterInfo().IsZAPresent()) {
assert(m_za_header.size <= GetZABufferSize());
dst = AddSavedRegisters(dst, RegisterSetType::SME, GetZABuffer(),
m_za_header.size);
}
// If ZT0 is present and we are going to be restoring an active ZA (which
// implies an active ZT0), then restore ZT0 after ZA has been set. This
// prevents us enabling ZA accidentally after the restore of ZA disabled it.
// If we leave ZA/ZT0 inactive and read ZT0, the kernel returns 0s. Therefore
// there's nothing for us to restore if ZA was originally inactive.
if (
// If we have SME2 and therefore ZT0.
GetRegisterInfo().IsZTPresent() &&
// And ZA is enabled.
m_za_header.size > sizeof(m_za_header))
dst = AddSavedRegisters(dst, RegisterSetType::SME2, GetZTBuffer(),
GetZTBufferSize());
if (GetRegisterInfo().IsMTEPresent()) {
dst = AddSavedRegisters(dst, RegisterSetType::MTE, GetMTEControl(),
GetMTEControlSize());
}
if (GetRegisterInfo().IsFPMRPresent()) {
dst = AddSavedRegisters(dst, RegisterSetType::FPMR, GetFPMRBuffer(),
GetFPMRBufferSize());
}
if (GetRegisterInfo().IsGCSPresent()) {
dst = AddSavedRegisters(dst, RegisterSetType::GCS, GetGCSBuffer(),
GetGCSBufferSize());
}
dst = AddSavedRegisters(dst, RegisterSetType::TLS, GetTLSBuffer(),
GetTLSBufferSize());
return error;
}
static Status RestoreRegisters(void *buffer, const uint8_t **src, size_t len,
bool &is_valid, std::function<Status()> writer) {
::memcpy(buffer, *src, len);
is_valid = true;
*src += len;
return writer();
}
Status NativeRegisterContextLinux_arm64::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
// AArch64 register data must contain GPRs, either FPR or SVE registers
// (which can be streaming or non-streaming) and optional MTE register.
// Pointer Authentication (PAC) registers are read-only and will be skipped.
// We store all register values in data_sp by copying full PTrace data that
// corresponds to register sets enabled by current register context. In order
// to restore from register data checkpoint we will first restore GPRs, based
// on size of remaining register data either SVE or FPRs should be restored
// next. SVE is not enabled if we have register data size less than or equal
// to size of GPR + FPR + MTE.
Status error;
if (!data_sp) {
error = Status::FromErrorStringWithFormat(
"NativeRegisterContextLinux_arm64::%s invalid data_sp provided",
__FUNCTION__);
return error;
}
const uint8_t *src = data_sp->GetBytes();
if (src == nullptr) {
error = Status::FromErrorStringWithFormat(
"NativeRegisterContextLinux_arm64::%s "
"DataBuffer::GetBytes() returned a null "
"pointer",
__FUNCTION__);
return error;
}
uint64_t reg_data_min_size =
GetGPRBufferSize() + GetFPRSize() + 2 * (sizeof(RegisterSetType));
if (data_sp->GetByteSize() < reg_data_min_size) {
error = Status::FromErrorStringWithFormat(
"NativeRegisterContextLinux_arm64::%s data_sp contained insufficient "
"register data bytes, expected at least %" PRIu64 ", actual %" PRIu64,
__FUNCTION__, reg_data_min_size, data_sp->GetByteSize());
return error;
}
const uint8_t *end = src + data_sp->GetByteSize();
while (src < end) {
const RegisterSetType kind =
*reinterpret_cast<const RegisterSetType *>(src);
src += sizeof(RegisterSetType);
switch (kind) {
case RegisterSetType::GPR:
error = RestoreRegisters(
GetGPRBuffer(), &src, GetGPRBufferSize(), m_gpr_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteGPR, this));
break;
case RegisterSetType::SVE:
// Restore to the correct mode, streaming or not.
m_sve_state = static_cast<SVEState>(*src);
src += sizeof(m_sve_state);
// First write SVE header. We do not use RestoreRegisters because we do
// not want src to be modified yet.
::memcpy(GetSVEHeader(), src, GetSVEHeaderSize());
if (!sve::vl_valid(m_sve_header.vl)) {
m_sve_header_is_valid = false;
error = Status::FromErrorStringWithFormat(
"NativeRegisterContextLinux_arm64::%s "
"Invalid SVE header in data_sp",
__FUNCTION__);
return error;
}
m_sve_header_is_valid = true;
error = WriteSVEHeader();
if (error.Fail())
return error;
// SVE header has been written configure SVE vector length if needed.
// This could change ZA data too, but that will be restored again later
// anyway.
ConfigureRegisterContext();
// Write header and register data, incrementing src this time.
error = RestoreRegisters(
GetSVEBuffer(), &src, GetSVEBufferSize(), m_sve_buffer_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteAllSVE, this));
break;
case RegisterSetType::FPR:
error = RestoreRegisters(
GetFPRBuffer(), &src, GetFPRSize(), m_fpu_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteFPR, this));
break;
case RegisterSetType::MTE:
error = RestoreRegisters(
GetMTEControl(), &src, GetMTEControlSize(), m_mte_ctrl_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteMTEControl, this));
break;
case RegisterSetType::TLS:
error = RestoreRegisters(
GetTLSBuffer(), &src, GetTLSBufferSize(), m_tls_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteTLS, this));
break;
case RegisterSetType::SME:
// To enable or disable ZA you write the regset with or without register
// data. The kernel detects this by looking at the ioVec's length, not the
// ZA header size you pass in. Therefore we must write header and register
// data (if present) in one go every time. Read the header only first just
// to get the size.
::memcpy(GetZAHeader(), src, GetZAHeaderSize());
// Read the header and register data. Can't use the buffer size here, it
// may be incorrect due to being filled with dummy data previously. Resize
// this so WriteZA uses the correct size.
m_za_ptrace_payload.resize(m_za_header.size);
::memcpy(GetZABuffer(), src, GetZABufferSize());
m_za_buffer_is_valid = true;
error = WriteZA();
if (error.Fail())
return error;
// Update size of ZA, which resizes the ptrace payload potentially
// trashing our copy of the data we just wrote.
ConfigureRegisterContext();
// ZA buffer now has proper size, read back the data we wrote above, from
// ptrace.
error = ReadZA();
src += GetZABufferSize();
break;
case RegisterSetType::SME2:
// Doing this would activate an inactive ZA, however we will only get here
// if the state we are restoring had an active ZA. Restoring ZT0 will
// always come after restoring ZA.
error = RestoreRegisters(
GetZTBuffer(), &src, GetZTBufferSize(), m_zt_buffer_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteZT, this));
break;
case RegisterSetType::FPMR:
error = RestoreRegisters(
GetFPMRBuffer(), &src, GetFPMRBufferSize(), m_fpmr_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteFPMR, this));
break;
case RegisterSetType::GCS:
// It is not permitted to enable GCS via ptrace. We can disable it, but
// to keep things simple we will not revert any change to the
// PR_SHADOW_STACK_ENABLE bit. Instead patch in the current enable bit
// into the registers we are about to restore.
m_gcs_is_valid = false;
error = ReadGCS();
if (error.Fail())
return error;
uint64_t enable_bit = m_gcs_regs.features_enabled & 1UL;
gcs_regs new_gcs_regs = *reinterpret_cast<const gcs_regs *>(src);
new_gcs_regs.features_enabled =
(new_gcs_regs.features_enabled & ~1UL) | enable_bit;
const uint8_t *new_gcs_src =
reinterpret_cast<const uint8_t *>(&new_gcs_regs);
error = RestoreRegisters(
GetGCSBuffer(), &new_gcs_src, GetGCSBufferSize(), m_gcs_is_valid,
std::bind(&NativeRegisterContextLinux_arm64::WriteGCS, this));
src += GetGCSBufferSize();
break;
}
if (error.Fail())
return error;
}
return error;
}
bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const {
if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) ==
RegisterInfoPOSIX_arm64::GPRegSet)
return true;
return false;
}
bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const {
if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) ==
RegisterInfoPOSIX_arm64::FPRegSet)
return true;
return false;
}
bool NativeRegisterContextLinux_arm64::IsSVE(unsigned reg) const {
return GetRegisterInfo().IsSVEReg(reg);
}
bool NativeRegisterContextLinux_arm64::IsSME(unsigned reg) const {
return GetRegisterInfo().IsSMEReg(reg);
}
bool NativeRegisterContextLinux_arm64::IsPAuth(unsigned reg) const {
return GetRegisterInfo().IsPAuthReg(reg);
}
bool NativeRegisterContextLinux_arm64::IsMTE(unsigned reg) const {
return GetRegisterInfo().IsMTEReg(reg);
}
bool NativeRegisterContextLinux_arm64::IsTLS(unsigned reg) const {
return GetRegisterInfo().IsTLSReg(reg);
}
bool NativeRegisterContextLinux_arm64::IsFPMR(unsigned reg) const {
return GetRegisterInfo().IsFPMRReg(reg);
}
bool NativeRegisterContextLinux_arm64::IsGCS(unsigned reg) const {
return GetRegisterInfo().IsGCSReg(reg);
}
llvm::Error NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() {
if (!m_refresh_hwdebug_info) {
return llvm::Error::success();
}
::pid_t tid = m_thread.GetID();
Status error = arm64::ReadHardwareDebugInfo(tid, m_max_hwp_supported,
m_max_hbp_supported);
if (error.Fail())
return error.ToError();
m_refresh_hwdebug_info = false;
return llvm::Error::success();
}
llvm::Error
NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(DREGType hwbType) {
uint32_t max_supported =
(hwbType == eDREGTypeWATCH) ? m_max_hwp_supported : m_max_hbp_supported;
auto ®s = (hwbType == eDREGTypeWATCH) ? m_hwp_regs : m_hbp_regs;
return arm64::WriteHardwareDebugRegs(hwbType, m_thread.GetID(), max_supported,
regs)
.ToError();
}
Status NativeRegisterContextLinux_arm64::ReadGPR() {
Status error;
if (m_gpr_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetGPRBuffer();
ioVec.iov_len = GetGPRBufferSize();
error = ReadRegisterSet(&ioVec, GetGPRBufferSize(), NT_PRSTATUS);
if (error.Success())
m_gpr_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteGPR() {
Status error = ReadGPR();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetGPRBuffer();
ioVec.iov_len = GetGPRBufferSize();
m_gpr_is_valid = false;
return WriteRegisterSet(&ioVec, GetGPRBufferSize(), NT_PRSTATUS);
}
Status NativeRegisterContextLinux_arm64::ReadFPR() {
Status error;
if (m_fpu_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetFPRBuffer();
ioVec.iov_len = GetFPRSize();
error = ReadRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET);
if (error.Success())
m_fpu_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteFPR() {
Status error = ReadFPR();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetFPRBuffer();
ioVec.iov_len = GetFPRSize();
m_fpu_is_valid = false;
return WriteRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET);
}
void NativeRegisterContextLinux_arm64::InvalidateAllRegisters() {
m_gpr_is_valid = false;
m_fpu_is_valid = false;
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
m_za_buffer_is_valid = false;
m_za_header_is_valid = false;
m_pac_mask_is_valid = false;
m_mte_ctrl_is_valid = false;
m_tls_is_valid = false;
m_zt_buffer_is_valid = false;
m_fpmr_is_valid = false;
m_gcs_is_valid = false;
// Update SVE and ZA registers in case there is change in configuration.
ConfigureRegisterContext();
}
unsigned NativeRegisterContextLinux_arm64::GetSVERegSet() {
return m_sve_state == SVEState::Streaming ? NT_ARM_SSVE : NT_ARM_SVE;
}
Status NativeRegisterContextLinux_arm64::ReadSVEHeader() {
Status error;
if (m_sve_header_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEHeader();
ioVec.iov_len = GetSVEHeaderSize();
error = ReadRegisterSet(&ioVec, GetSVEHeaderSize(), GetSVERegSet());
if (error.Success())
m_sve_header_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::ReadPAuthMask() {
Status error;
if (m_pac_mask_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetPACMask();
ioVec.iov_len = GetPACMaskSize();
error = ReadRegisterSet(&ioVec, GetPACMaskSize(), NT_ARM_PAC_MASK);
if (error.Success())
m_pac_mask_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteSVEHeader() {
Status error;
error = ReadSVEHeader();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEHeader();
ioVec.iov_len = GetSVEHeaderSize();
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
m_fpu_is_valid = false;
return WriteRegisterSet(&ioVec, GetSVEHeaderSize(), GetSVERegSet());
}
Status NativeRegisterContextLinux_arm64::ReadAllSVE() {
Status error;
if (m_sve_buffer_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEBuffer();
ioVec.iov_len = GetSVEBufferSize();
error = ReadRegisterSet(&ioVec, GetSVEBufferSize(), GetSVERegSet());
if (error.Success())
m_sve_buffer_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteAllSVE() {
Status error;
error = ReadAllSVE();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetSVEBuffer();
ioVec.iov_len = GetSVEBufferSize();
m_sve_buffer_is_valid = false;
m_sve_header_is_valid = false;
m_fpu_is_valid = false;
return WriteRegisterSet(&ioVec, GetSVEBufferSize(), GetSVERegSet());
}
Status NativeRegisterContextLinux_arm64::ReadSMEControl() {
// The real register is SVCR and is accessible from EL0. However we don't want
// to have to JIT code into the target process so we'll just recreate it using
// what we know from ptrace.
// Bit 0 indicates whether streaming mode is active.
m_sme_pseudo_regs.ctrl_reg = m_sve_state == SVEState::Streaming;
// Bit 1 indicates whether the array storage is active.
// It is active if we can read the header and the size field tells us that
// there is register data following it.
Status error = ReadZAHeader();
if (error.Success() && (m_za_header.size > sizeof(m_za_header)))
m_sme_pseudo_regs.ctrl_reg |= 2;
return error;
}
Status NativeRegisterContextLinux_arm64::ReadMTEControl() {
Status error;
if (m_mte_ctrl_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetMTEControl();
ioVec.iov_len = GetMTEControlSize();
error = ReadRegisterSet(&ioVec, GetMTEControlSize(), NT_ARM_TAGGED_ADDR_CTRL);
if (error.Success())
m_mte_ctrl_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteMTEControl() {
Status error;
error = ReadMTEControl();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetMTEControl();
ioVec.iov_len = GetMTEControlSize();
m_mte_ctrl_is_valid = false;
return WriteRegisterSet(&ioVec, GetMTEControlSize(), NT_ARM_TAGGED_ADDR_CTRL);
}
Status NativeRegisterContextLinux_arm64::ReadTLS() {
Status error;
if (m_tls_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetTLSBuffer();
ioVec.iov_len = GetTLSBufferSize();
error = ReadRegisterSet(&ioVec, GetTLSBufferSize(), NT_ARM_TLS);
if (error.Success())
m_tls_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteTLS() {
Status error;
error = ReadTLS();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetTLSBuffer();
ioVec.iov_len = GetTLSBufferSize();
m_tls_is_valid = false;
return WriteRegisterSet(&ioVec, GetTLSBufferSize(), NT_ARM_TLS);
}
Status NativeRegisterContextLinux_arm64::ReadGCS() {
Status error;
if (m_gcs_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetGCSBuffer();
ioVec.iov_len = GetGCSBufferSize();
error = ReadRegisterSet(&ioVec, GetGCSBufferSize(), NT_ARM_GCS);
if (error.Success())
m_gcs_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteGCS() {
Status error;
error = ReadGCS();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetGCSBuffer();
ioVec.iov_len = GetGCSBufferSize();
m_gcs_is_valid = false;
return WriteRegisterSet(&ioVec, GetGCSBufferSize(), NT_ARM_GCS);
}
Status NativeRegisterContextLinux_arm64::ReadZAHeader() {
Status error;
if (m_za_header_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetZAHeader();
ioVec.iov_len = GetZAHeaderSize();
error = ReadRegisterSet(&ioVec, GetZAHeaderSize(), NT_ARM_ZA);
if (error.Success())
m_za_header_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::ReadZA() {
Status error;
if (m_za_buffer_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetZABuffer();
ioVec.iov_len = GetZABufferSize();
error = ReadRegisterSet(&ioVec, GetZABufferSize(), NT_ARM_ZA);
if (error.Success())
m_za_buffer_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteZA() {
// Note that because the ZA ptrace payload contains the header also, this
// method will write both. This is done because writing only the header
// will disable ZA, even if .size in the header is correct for an enabled ZA.
Status error;
error = ReadZA();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetZABuffer();
ioVec.iov_len = GetZABufferSize();
m_za_buffer_is_valid = false;
m_za_header_is_valid = false;
// Writing to ZA may enable ZA, which means ZT0 may change too.
m_zt_buffer_is_valid = false;
return WriteRegisterSet(&ioVec, GetZABufferSize(), NT_ARM_ZA);
}
Status NativeRegisterContextLinux_arm64::ReadZT() {
Status error;
if (m_zt_buffer_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetZTBuffer();
ioVec.iov_len = GetZTBufferSize();
error = ReadRegisterSet(&ioVec, GetZTBufferSize(), NT_ARM_ZT);
m_zt_buffer_is_valid = error.Success();
return error;
}
Status NativeRegisterContextLinux_arm64::WriteZT() {
Status error;
error = ReadZT();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetZTBuffer();
ioVec.iov_len = GetZTBufferSize();
m_zt_buffer_is_valid = false;
// Writing to an inactive ZT0 will enable ZA as well, which invalidates our
// current copy of it.
m_za_buffer_is_valid = false;
m_za_header_is_valid = false;
return WriteRegisterSet(&ioVec, GetZTBufferSize(), NT_ARM_ZT);
}
Status NativeRegisterContextLinux_arm64::ReadFPMR() {
Status error;
if (m_fpmr_is_valid)
return error;
struct iovec ioVec;
ioVec.iov_base = GetFPMRBuffer();
ioVec.iov_len = GetFPMRBufferSize();
error = ReadRegisterSet(&ioVec, GetFPMRBufferSize(), NT_ARM_FPMR);
if (error.Success())
m_fpmr_is_valid = true;
return error;
}
Status NativeRegisterContextLinux_arm64::WriteFPMR() {
Status error;
error = ReadFPMR();
if (error.Fail())
return error;
struct iovec ioVec;
ioVec.iov_base = GetFPMRBuffer();
ioVec.iov_len = GetFPMRBufferSize();
m_fpmr_is_valid = false;
return WriteRegisterSet(&ioVec, GetFPMRBufferSize(), NT_ARM_FPMR);
}
void NativeRegisterContextLinux_arm64::ConfigureRegisterContext() {
// ConfigureRegisterContext gets called from InvalidateAllRegisters
// on every stop and configures SVE vector length and whether we are in
// streaming SVE mode.
// If m_sve_state is set to SVEState::Disabled on first stop, code below will
// be deemed non operational for the lifetime of current process.
if (!m_sve_header_is_valid && m_sve_state != SVEState::Disabled) {
// If we have SVE we may also have the SVE streaming mode that SME added.
// We can read the header of either mode, but only the active mode will
// have valid register data.
// Check whether SME is present and the streaming SVE mode is active.
m_sve_header_is_valid = false;
m_sve_buffer_is_valid = false;
m_sve_state = SVEState::Streaming;
Status error = ReadSVEHeader();
// Streaming mode is active if the header has the SVE active flag set.
if (!(error.Success() && ((m_sve_header.flags & sve::ptrace_regs_mask) ==
sve::ptrace_regs_sve))) {
// Non-streaming might be active instead.
m_sve_header_is_valid = false;
m_sve_buffer_is_valid = false;
m_sve_state = SVEState::Full;
error = ReadSVEHeader();
if (error.Success()) {
// If SVE is enabled thread can switch between SVEState::FPSIMD and
// SVEState::Full on every stop.
if ((m_sve_header.flags & sve::ptrace_regs_mask) ==
sve::ptrace_regs_fpsimd)
m_sve_state = SVEState::FPSIMD;
// Else we are in SVEState::Full.
} else {
m_sve_state = SVEState::Disabled;
}
}
if (m_sve_state == SVEState::Full || m_sve_state == SVEState::FPSIMD ||
m_sve_state == SVEState::Streaming) {
// On every stop we configure SVE vector length by calling
// ConfigureVectorLengthSVE regardless of current SVEState of this thread.
uint32_t vq = RegisterInfoPOSIX_arm64::eVectorQuadwordAArch64SVE;
if (sve::vl_valid(m_sve_header.vl))
vq = sve::vq_from_vl(m_sve_header.vl);
GetRegisterInfo().ConfigureVectorLengthSVE(vq);
m_sve_ptrace_payload.resize(sve::PTraceSize(vq, sve::ptrace_regs_sve));
}
}
if (!m_za_header_is_valid) {
Status error = ReadZAHeader();
if (error.Success()) {
uint32_t vq = RegisterInfoPOSIX_arm64::eVectorQuadwordAArch64SVE;
if (sve::vl_valid(m_za_header.vl))
vq = sve::vq_from_vl(m_za_header.vl);
GetRegisterInfo().ConfigureVectorLengthZA(vq);
m_za_ptrace_payload.resize(m_za_header.size);
m_za_buffer_is_valid = false;
}
}
}
uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset(
const RegisterInfo *reg_info) const {
return reg_info->byte_offset - GetGPRSize();
}
uint32_t NativeRegisterContextLinux_arm64::CalculateSVEOffset(
const RegisterInfo *reg_info) const {
// Start of Z0 data is after GPRs plus 8 bytes of vg register
uint32_t sve_reg_offset = LLDB_INVALID_INDEX32;
if (m_sve_state == SVEState::FPSIMD) {
const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
sve_reg_offset = sve::ptrace_fpsimd_offset +
(reg - GetRegisterInfo().GetRegNumSVEZ0()) * 16;
// Between non-streaming and streaming mode, the layout is identical.
} else if (m_sve_state == SVEState::Full ||
m_sve_state == SVEState::Streaming) {
uint32_t sve_z0_offset = GetGPRSize() + 16;
sve_reg_offset =
sve::SigRegsOffset() + reg_info->byte_offset - sve_z0_offset;
}
return sve_reg_offset;
}
Status NativeRegisterContextLinux_arm64::ReadSMESVG() {
// This register is the streaming vector length, so we will get it from
// NT_ARM_ZA regardless of the current streaming mode.
Status error = ReadZAHeader();
if (error.Success())
m_sme_pseudo_regs.svg_reg = m_za_header.vl / 8;
return error;
}
std::vector<uint32_t> NativeRegisterContextLinux_arm64::GetExpeditedRegisters(
ExpeditedRegs expType) const {
std::vector<uint32_t> expedited_reg_nums =
NativeRegisterContext::GetExpeditedRegisters(expType);
// SVE, non-streaming vector length.
if (m_sve_state == SVEState::FPSIMD || m_sve_state == SVEState::Full)
expedited_reg_nums.push_back(GetRegisterInfo().GetRegNumSVEVG());
// SME, streaming vector length. This is used by the ZA register which is
// present even when streaming mode is not enabled.
if (GetRegisterInfo().IsSSVEPresent())
expedited_reg_nums.push_back(GetRegisterInfo().GetRegNumSMESVG());
return expedited_reg_nums;
}
llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails>
NativeRegisterContextLinux_arm64::GetMemoryTaggingDetails(int32_t type) {
if (type == MemoryTagManagerAArch64MTE::eMTE_allocation) {
return MemoryTaggingDetails{std::make_unique<MemoryTagManagerAArch64MTE>(),
PTRACE_PEEKMTETAGS, PTRACE_POKEMTETAGS};
}
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Unknown AArch64 memory tag type %d", type);
}
lldb::addr_t NativeRegisterContextLinux_arm64::FixWatchpointHitAddress(
lldb::addr_t hit_addr) {
// Linux configures user-space virtual addresses with top byte ignored.
// We set default value of mask such that top byte is masked out.
lldb::addr_t mask = ~((1ULL << 56) - 1);
// Try to read pointer authentication data_mask register and calculate a
// consolidated data address mask after ignoring the top byte.
if (ReadPAuthMask().Success())
mask |= m_pac_mask.data_mask;
return hit_addr & ~mask;
;
}
#endif // defined (__arm64__) || defined (__aarch64__)
|