1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
|
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
// categorize scalar expressions in loops. It specializes in recognizing
// general induction variables, representing them with the abstract and opaque
// SCEV class. Given this analysis, trip counts of loops and other important
// properties can be obtained.
//
// This analysis is primarily useful for induction variable substitution and
// strength reduction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <optional>
#include <utility>
namespace llvm {
class OverflowingBinaryOperator;
class AssumptionCache;
class BasicBlock;
class Constant;
class ConstantInt;
class DataLayout;
class DominatorTree;
class GEPOperator;
class LLVMContext;
class Loop;
class LoopInfo;
class raw_ostream;
class ScalarEvolution;
class SCEVAddRecExpr;
class SCEVUnknown;
class StructType;
class TargetLibraryInfo;
class Type;
enum SCEVTypes : unsigned short;
LLVM_ABI extern bool VerifySCEV;
/// This class represents an analyzed expression in the program. These are
/// opaque objects that the client is not allowed to do much with directly.
///
class SCEV : public FoldingSetNode {
friend struct FoldingSetTrait<SCEV>;
/// A reference to an Interned FoldingSetNodeID for this node. The
/// ScalarEvolution's BumpPtrAllocator holds the data.
FoldingSetNodeIDRef FastID;
// The SCEV baseclass this node corresponds to
const SCEVTypes SCEVType;
protected:
// Estimated complexity of this node's expression tree size.
const unsigned short ExpressionSize;
/// This field is initialized to zero and may be used in subclasses to store
/// miscellaneous information.
unsigned short SubclassData = 0;
public:
/// NoWrapFlags are bitfield indices into SubclassData.
///
/// Add and Mul expressions may have no-unsigned-wrap <NUW> or
/// no-signed-wrap <NSW> properties, which are derived from the IR
/// operator. NSW is a misnomer that we use to mean no signed overflow or
/// underflow.
///
/// AddRec expressions may have a no-self-wraparound <NW> property if, in
/// the integer domain, abs(step) * max-iteration(loop) <=
/// unsigned-max(bitwidth). This means that the recurrence will never reach
/// its start value if the step is non-zero. Computing the same value on
/// each iteration is not considered wrapping, and recurrences with step = 0
/// are trivially <NW>. <NW> is independent of the sign of step and the
/// value the add recurrence starts with.
///
/// Note that NUW and NSW are also valid properties of a recurrence, and
/// either implies NW. For convenience, NW will be set for a recurrence
/// whenever either NUW or NSW are set.
///
/// We require that the flag on a SCEV apply to the entire scope in which
/// that SCEV is defined. A SCEV's scope is set of locations dominated by
/// a defining location, which is in turn described by the following rules:
/// * A SCEVUnknown is at the point of definition of the Value.
/// * A SCEVConstant is defined at all points.
/// * A SCEVAddRec is defined starting with the header of the associated
/// loop.
/// * All other SCEVs are defined at the earlest point all operands are
/// defined.
///
/// The above rules describe a maximally hoisted form (without regards to
/// potential control dependence). A SCEV is defined anywhere a
/// corresponding instruction could be defined in said maximally hoisted
/// form. Note that SCEVUDivExpr (currently the only expression type which
/// can trap) can be defined per these rules in regions where it would trap
/// at runtime. A SCEV being defined does not require the existence of any
/// instruction within the defined scope.
enum NoWrapFlags {
FlagAnyWrap = 0, // No guarantee.
FlagNW = (1 << 0), // No self-wrap.
FlagNUW = (1 << 1), // No unsigned wrap.
FlagNSW = (1 << 2), // No signed wrap.
NoWrapMask = (1 << 3) - 1
};
explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
unsigned short ExpressionSize)
: FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
SCEV(const SCEV &) = delete;
SCEV &operator=(const SCEV &) = delete;
SCEVTypes getSCEVType() const { return SCEVType; }
/// Return the LLVM type of this SCEV expression.
LLVM_ABI Type *getType() const;
/// Return operands of this SCEV expression.
LLVM_ABI ArrayRef<const SCEV *> operands() const;
/// Return true if the expression is a constant zero.
LLVM_ABI bool isZero() const;
/// Return true if the expression is a constant one.
LLVM_ABI bool isOne() const;
/// Return true if the expression is a constant all-ones value.
LLVM_ABI bool isAllOnesValue() const;
/// Return true if the specified scev is negated, but not a constant.
LLVM_ABI bool isNonConstantNegative() const;
// Returns estimated size of the mathematical expression represented by this
// SCEV. The rules of its calculation are following:
// 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
// 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
// (1 + Size(Op1) + ... + Size(OpN)).
// This value gives us an estimation of time we need to traverse through this
// SCEV and all its operands recursively. We may use it to avoid performing
// heavy transformations on SCEVs of excessive size for sake of saving the
// compilation time.
unsigned short getExpressionSize() const {
return ExpressionSize;
}
/// Print out the internal representation of this scalar to the specified
/// stream. This should really only be used for debugging purposes.
LLVM_ABI void print(raw_ostream &OS) const;
/// This method is used for debugging.
LLVM_ABI void dump() const;
};
// Specialize FoldingSetTrait for SCEV to avoid needing to compute
// temporary FoldingSetNodeID values.
template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
FoldingSetNodeID &TempID) {
return ID == X.FastID;
}
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
return X.FastID.ComputeHash();
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
S.print(OS);
return OS;
}
/// An object of this class is returned by queries that could not be answered.
/// For example, if you ask for the number of iterations of a linked-list
/// traversal loop, you will get one of these. None of the standard SCEV
/// operations are valid on this class, it is just a marker.
struct SCEVCouldNotCompute : public SCEV {
LLVM_ABI SCEVCouldNotCompute();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
LLVM_ABI static bool classof(const SCEV *S);
};
/// This class represents an assumption made using SCEV expressions which can
/// be checked at run-time.
class SCEVPredicate : public FoldingSetNode {
friend struct FoldingSetTrait<SCEVPredicate>;
/// A reference to an Interned FoldingSetNodeID for this node. The
/// ScalarEvolution's BumpPtrAllocator holds the data.
FoldingSetNodeIDRef FastID;
public:
enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
protected:
SCEVPredicateKind Kind;
~SCEVPredicate() = default;
SCEVPredicate(const SCEVPredicate &) = default;
SCEVPredicate &operator=(const SCEVPredicate &) = default;
public:
LLVM_ABI SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
SCEVPredicateKind getKind() const { return Kind; }
/// Returns the estimated complexity of this predicate. This is roughly
/// measured in the number of run-time checks required.
virtual unsigned getComplexity() const { return 1; }
/// Returns true if the predicate is always true. This means that no
/// assumptions were made and nothing needs to be checked at run-time.
virtual bool isAlwaysTrue() const = 0;
/// Returns true if this predicate implies \p N.
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const = 0;
/// Prints a textual representation of this predicate with an indentation of
/// \p Depth.
virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
};
inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
P.print(OS);
return OS;
}
// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
// temporary FoldingSetNodeID values.
template <>
struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
ID = X.FastID;
}
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
return ID == X.FastID;
}
static unsigned ComputeHash(const SCEVPredicate &X,
FoldingSetNodeID &TempID) {
return X.FastID.ComputeHash();
}
};
/// This class represents an assumption that the expression LHS Pred RHS
/// evaluates to true, and this can be checked at run-time.
class LLVM_ABI SCEVComparePredicate final : public SCEVPredicate {
/// We assume that LHS Pred RHS is true.
const ICmpInst::Predicate Pred;
const SCEV *LHS;
const SCEV *RHS;
public:
SCEVComparePredicate(const FoldingSetNodeIDRef ID,
const ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Implementation of the SCEVPredicate interface
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
void print(raw_ostream &OS, unsigned Depth = 0) const override;
bool isAlwaysTrue() const override;
ICmpInst::Predicate getPredicate() const { return Pred; }
/// Returns the left hand side of the predicate.
const SCEV *getLHS() const { return LHS; }
/// Returns the right hand side of the predicate.
const SCEV *getRHS() const { return RHS; }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEVPredicate *P) {
return P->getKind() == P_Compare;
}
};
/// This class represents an assumption made on an AddRec expression. Given an
/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
/// flags (defined below) in the first X iterations of the loop, where X is a
/// SCEV expression returned by getPredicatedBackedgeTakenCount).
///
/// Note that this does not imply that X is equal to the backedge taken
/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
/// have more than X iterations.
class LLVM_ABI SCEVWrapPredicate final : public SCEVPredicate {
public:
/// Similar to SCEV::NoWrapFlags, but with slightly different semantics
/// for FlagNUSW. The increment is considered to be signed, and a + b
/// (where b is the increment) is considered to wrap if:
/// zext(a + b) != zext(a) + sext(b)
///
/// If Signed is a function that takes an n-bit tuple and maps to the
/// integer domain as the tuples value interpreted as twos complement,
/// and Unsigned a function that takes an n-bit tuple and maps to the
/// integer domain as the base two value of input tuple, then a + b
/// has IncrementNUSW iff:
///
/// 0 <= Unsigned(a) + Signed(b) < 2^n
///
/// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
///
/// Note that the IncrementNUSW flag is not commutative: if base + inc
/// has IncrementNUSW, then inc + base doesn't neccessarily have this
/// property. The reason for this is that this is used for sign/zero
/// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
/// assumed. A {base,+,inc} expression is already non-commutative with
/// regards to base and inc, since it is interpreted as:
/// (((base + inc) + inc) + inc) ...
enum IncrementWrapFlags {
IncrementAnyWrap = 0, // No guarantee.
IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
IncrementNSSW = (1 << 1), // No signed with signed increment wrap
// (equivalent with SCEV::NSW)
IncrementNoWrapMask = (1 << 2) - 1
};
/// Convenient IncrementWrapFlags manipulation methods.
[[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
"Invalid flags value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
}
[[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
}
[[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
"Invalid flags value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
}
/// Returns the set of SCEVWrapPredicate no wrap flags implied by a
/// SCEVAddRecExpr.
[[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
private:
const SCEVAddRecExpr *AR;
IncrementWrapFlags Flags;
public:
explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
const SCEVAddRecExpr *AR,
IncrementWrapFlags Flags);
/// Returns the set assumed no overflow flags.
IncrementWrapFlags getFlags() const { return Flags; }
/// Implementation of the SCEVPredicate interface
const SCEVAddRecExpr *getExpr() const;
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
void print(raw_ostream &OS, unsigned Depth = 0) const override;
bool isAlwaysTrue() const override;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEVPredicate *P) {
return P->getKind() == P_Wrap;
}
};
/// This class represents a composition of other SCEV predicates, and is the
/// class that most clients will interact with. This is equivalent to a
/// logical "AND" of all the predicates in the union.
///
/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
/// ScalarEvolution::Preds folding set. This is why the \c add function is sound.
class LLVM_ABI SCEVUnionPredicate final : public SCEVPredicate {
private:
using PredicateMap =
DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
/// Vector with references to all predicates in this union.
SmallVector<const SCEVPredicate *, 16> Preds;
/// Adds a predicate to this union.
void add(const SCEVPredicate *N, ScalarEvolution &SE);
public:
SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds,
ScalarEvolution &SE);
ArrayRef<const SCEVPredicate *> getPredicates() const { return Preds; }
/// Implementation of the SCEVPredicate interface
bool isAlwaysTrue() const override;
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override;
void print(raw_ostream &OS, unsigned Depth) const override;
/// We estimate the complexity of a union predicate as the size number of
/// predicates in the union.
unsigned getComplexity() const override { return Preds.size(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEVPredicate *P) {
return P->getKind() == P_Union;
}
};
/// The main scalar evolution driver. Because client code (intentionally)
/// can't do much with the SCEV objects directly, they must ask this class
/// for services.
class ScalarEvolution {
friend class ScalarEvolutionsTest;
public:
/// An enum describing the relationship between a SCEV and a loop.
enum LoopDisposition {
LoopVariant, ///< The SCEV is loop-variant (unknown).
LoopInvariant, ///< The SCEV is loop-invariant.
LoopComputable ///< The SCEV varies predictably with the loop.
};
/// An enum describing the relationship between a SCEV and a basic block.
enum BlockDisposition {
DoesNotDominateBlock, ///< The SCEV does not dominate the block.
DominatesBlock, ///< The SCEV dominates the block.
ProperlyDominatesBlock ///< The SCEV properly dominates the block.
};
/// Convenient NoWrapFlags manipulation that hides enum casts and is
/// visible in the ScalarEvolution name space.
[[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
int Mask) {
return (SCEV::NoWrapFlags)(Flags & Mask);
}
[[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
SCEV::NoWrapFlags OnFlags) {
return (SCEV::NoWrapFlags)(Flags | OnFlags);
}
[[nodiscard]] static SCEV::NoWrapFlags
clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
}
[[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
SCEV::NoWrapFlags TestFlags) {
return TestFlags == maskFlags(Flags, TestFlags);
};
LLVM_ABI ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
AssumptionCache &AC, DominatorTree &DT,
LoopInfo &LI);
LLVM_ABI ScalarEvolution(ScalarEvolution &&Arg);
LLVM_ABI ~ScalarEvolution();
LLVMContext &getContext() const { return F.getContext(); }
/// Test if values of the given type are analyzable within the SCEV
/// framework. This primarily includes integer types, and it can optionally
/// include pointer types if the ScalarEvolution class has access to
/// target-specific information.
LLVM_ABI bool isSCEVable(Type *Ty) const;
/// Return the size in bits of the specified type, for which isSCEVable must
/// return true.
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const;
/// Return a type with the same bitwidth as the given type and which
/// represents how SCEV will treat the given type, for which isSCEVable must
/// return true. For pointer types, this is the pointer-sized integer type.
LLVM_ABI Type *getEffectiveSCEVType(Type *Ty) const;
// Returns a wider type among {Ty1, Ty2}.
LLVM_ABI Type *getWiderType(Type *Ty1, Type *Ty2) const;
/// Return true if there exists a point in the program at which both
/// A and B could be operands to the same instruction.
/// SCEV expressions are generally assumed to correspond to instructions
/// which could exists in IR. In general, this requires that there exists
/// a use point in the program where all operands dominate the use.
///
/// Example:
/// loop {
/// if
/// loop { v1 = load @global1; }
/// else
/// loop { v2 = load @global2; }
/// }
/// No SCEV with operand V1, and v2 can exist in this program.
LLVM_ABI bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B);
/// Return true if the SCEV is a scAddRecExpr or it contains
/// scAddRecExpr. The result will be cached in HasRecMap.
LLVM_ABI bool containsAddRecurrence(const SCEV *S);
/// Is operation \p BinOp between \p LHS and \p RHS provably does not have
/// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
/// no-overflow fact should be true in the context of this instruction.
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
const SCEV *LHS, const SCEV *RHS,
const Instruction *CtxI = nullptr);
/// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
/// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
/// Does not mutate the original instruction. Returns std::nullopt if it could
/// not deduce more precise flags than the instruction already has, otherwise
/// returns proven flags.
LLVM_ABI std::optional<SCEV::NoWrapFlags>
getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
/// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
LLVM_ABI void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
/// Return true if the SCEV expression contains an undef value.
LLVM_ABI bool containsUndefs(const SCEV *S) const;
/// Return true if the SCEV expression contains a Value that has been
/// optimised out and is now a nullptr.
LLVM_ABI bool containsErasedValue(const SCEV *S) const;
/// Return a SCEV expression for the full generality of the specified
/// expression.
LLVM_ABI const SCEV *getSCEV(Value *V);
/// Return an existing SCEV for V if there is one, otherwise return nullptr.
LLVM_ABI const SCEV *getExistingSCEV(Value *V);
LLVM_ABI const SCEV *getConstant(ConstantInt *V);
LLVM_ABI const SCEV *getConstant(const APInt &Val);
LLVM_ABI const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
LLVM_ABI const SCEV *getLosslessPtrToIntExpr(const SCEV *Op,
unsigned Depth = 0);
LLVM_ABI const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
LLVM_ABI const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty,
unsigned Depth = 0);
LLVM_ABI const SCEV *getVScale(Type *Ty);
LLVM_ABI const SCEV *getElementCount(Type *Ty, ElementCount EC);
LLVM_ABI const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty,
unsigned Depth = 0);
LLVM_ABI const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
unsigned Depth = 0);
LLVM_ABI const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty,
unsigned Depth = 0);
LLVM_ABI const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
unsigned Depth = 0);
LLVM_ABI const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
LLVM_ABI const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
LLVM_ABI const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0);
const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0) {
SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
return getAddExpr(Ops, Flags, Depth);
}
const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0) {
SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
return getAddExpr(Ops, Flags, Depth);
}
LLVM_ABI const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0);
const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0) {
SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
return getMulExpr(Ops, Flags, Depth);
}
const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0) {
SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
return getMulExpr(Ops, Flags, Depth);
}
LLVM_ABI const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
LLVM_ABI const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
LLVM_ABI const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
LLVM_ABI const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
const Loop *L, SCEV::NoWrapFlags Flags);
LLVM_ABI const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags);
const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags) {
SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
return getAddRecExpr(NewOp, L, Flags);
}
/// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
/// Predicates. If successful return these <AddRecExpr, Predicates>;
/// The function is intended to be called from PSCEV (the caller will decide
/// whether to actually add the predicates and carry out the rewrites).
LLVM_ABI std::optional<
std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
/// Returns an expression for a GEP
///
/// \p GEP The GEP. The indices contained in the GEP itself are ignored,
/// instead we use IndexExprs.
/// \p IndexExprs The expressions for the indices.
LLVM_ABI const SCEV *
getGEPExpr(GEPOperator *GEP, const SmallVectorImpl<const SCEV *> &IndexExprs);
LLVM_ABI const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
LLVM_ABI const SCEV *getMinMaxExpr(SCEVTypes Kind,
SmallVectorImpl<const SCEV *> &Operands);
LLVM_ABI const SCEV *
getSequentialMinMaxExpr(SCEVTypes Kind,
SmallVectorImpl<const SCEV *> &Operands);
LLVM_ABI const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
LLVM_ABI const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
LLVM_ABI const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
LLVM_ABI const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
LLVM_ABI const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
LLVM_ABI const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
LLVM_ABI const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
bool Sequential = false);
LLVM_ABI const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
bool Sequential = false);
LLVM_ABI const SCEV *getUnknown(Value *V);
LLVM_ABI const SCEV *getCouldNotCompute();
/// Return a SCEV for the constant 0 of a specific type.
const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
/// Return a SCEV for the constant 1 of a specific type.
const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
/// Return a SCEV for the constant \p Power of two.
const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
return getConstant(APInt::getOneBitSet(getTypeSizeInBits(Ty), Power));
}
/// Return a SCEV for the constant -1 of a specific type.
const SCEV *getMinusOne(Type *Ty) {
return getConstant(Ty, -1, /*isSigned=*/true);
}
/// Return an expression for a TypeSize.
LLVM_ABI const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size);
/// Return an expression for the alloc size of AllocTy that is type IntTy
LLVM_ABI const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
/// Return an expression for the store size of StoreTy that is type IntTy
LLVM_ABI const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
/// Return an expression for offsetof on the given field with type IntTy
LLVM_ABI const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy,
unsigned FieldNo);
/// Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV *
getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
/// Return the SCEV object corresponding to ~V.
LLVM_ABI const SCEV *getNotSCEV(const SCEV *V);
/// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
///
/// If the LHS and RHS are pointers which don't share a common base
/// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
/// To compute the difference between two unrelated pointers, you can
/// explicitly convert the arguments using getPtrToIntExpr(), for pointer
/// types that support it.
LLVM_ABI const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
unsigned Depth = 0);
/// Compute ceil(N / D). N and D are treated as unsigned values.
///
/// Since SCEV doesn't have native ceiling division, this generates a
/// SCEV expression of the following form:
///
/// umin(N, 1) + floor((N - umin(N, 1)) / D)
///
/// A denominator of zero or poison is handled the same way as getUDivExpr().
LLVM_ABI const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is zero extended.
LLVM_ABI const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
unsigned Depth = 0);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is sign extended.
LLVM_ABI const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
unsigned Depth = 0);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is zero extended. The
/// conversion must not be narrowing.
LLVM_ABI const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is sign extended. The
/// conversion must not be narrowing.
LLVM_ABI const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is extended with
/// unspecified bits. The conversion must not be narrowing.
LLVM_ABI const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. The conversion must not be widening.
LLVM_ABI const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
/// Promote the operands to the wider of the types using zero-extension, and
/// then perform a umax operation with them.
LLVM_ABI const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS);
/// Promote the operands to the wider of the types using zero-extension, and
/// then perform a umin operation with them.
LLVM_ABI const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS,
bool Sequential = false);
/// Promote the operands to the wider of the types using zero-extension, and
/// then perform a umin operation with them. N-ary function.
LLVM_ABI const SCEV *
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
bool Sequential = false);
/// Transitively follow the chain of pointer-type operands until reaching a
/// SCEV that does not have a single pointer operand. This returns a
/// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
/// cases do exist.
LLVM_ABI const SCEV *getPointerBase(const SCEV *V);
/// Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI const SCEV *removePointerBase(const SCEV *S);
/// Return a SCEV expression for the specified value at the specified scope
/// in the program. The L value specifies a loop nest to evaluate the
/// expression at, where null is the top-level or a specified loop is
/// immediately inside of the loop.
///
/// This method can be used to compute the exit value for a variable defined
/// in a loop by querying what the value will hold in the parent loop.
///
/// In the case that a relevant loop exit value cannot be computed, the
/// original value V is returned.
LLVM_ABI const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
/// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
LLVM_ABI const SCEV *getSCEVAtScope(Value *V, const Loop *L);
/// Test whether entry to the loop is protected by a conditional between LHS
/// and RHS. This is used to help avoid max expressions in loop trip
/// counts, and to eliminate casts.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Test whether entry to the basic block is protected by a conditional
/// between LHS and RHS.
LLVM_ABI bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
CmpPredicate Pred,
const SCEV *LHS,
const SCEV *RHS);
/// Test whether the backedge of the loop is protected by a conditional
/// between LHS and RHS. This is used to eliminate casts.
LLVM_ABI bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// A version of getTripCountFromExitCount below which always picks an
/// evaluation type which can not result in overflow.
LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
/// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
/// count". A "trip count" is the number of times the header of the loop
/// will execute if an exit is taken after the specified number of backedges
/// have been taken. (e.g. TripCount = ExitCount + 1). Note that the
/// expression can overflow if ExitCount = UINT_MAX. If EvalTy is not wide
/// enough to hold the result without overflow, result unsigned wraps with
/// 2s-complement semantics. ex: EC = 255 (i8), TC = 0 (i8)
LLVM_ABI const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
Type *EvalTy, const Loop *L);
/// Returns the exact trip count of the loop if we can compute it, and
/// the result is a small constant. '0' is used to represent an unknown
/// or non-constant trip count. Note that a trip count is simply one more
/// than the backedge taken count for the loop.
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L);
/// Return the exact trip count for this loop if we exit through ExitingBlock.
/// '0' is used to represent an unknown or non-constant trip count. Note
/// that a trip count is simply one more than the backedge taken count for
/// the same exit.
/// This "trip count" assumes that control exits via ExitingBlock. More
/// precisely, it is the number of times that control will reach ExitingBlock
/// before taking the branch. For loops with multiple exits, it may not be
/// the number times that the loop header executes if the loop exits
/// prematurely via another branch.
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L,
const BasicBlock *ExitingBlock);
/// Returns the upper bound of the loop trip count as a normal unsigned
/// value.
/// Returns 0 if the trip count is unknown, not constant or requires
/// SCEV predicates and \p Predicates is nullptr.
LLVM_ABI unsigned getSmallConstantMaxTripCount(
const Loop *L,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
/// Returns the largest constant divisor of the trip count as a normal
/// unsigned value, if possible. This means that the actual trip count is
/// always a multiple of the returned value. Returns 1 if the trip count is
/// unknown or not guaranteed to be the multiple of a constant., Will also
/// return 1 if the trip count is very large (>= 2^32).
/// Note that the argument is an exit count for loop L, NOT a trip count.
LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L,
const SCEV *ExitCount);
/// Returns the largest constant divisor of the trip count of the
/// loop. Will return 1 if no trip count could be computed, or if a
/// divisor could not be found.
LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L);
/// Returns the largest constant divisor of the trip count of this loop as a
/// normal unsigned value, if possible. This means that the actual trip
/// count is always a multiple of the returned value (don't forget the trip
/// count could very well be zero as well!). As explained in the comments
/// for getSmallConstantTripCount, this assumes that control exits the loop
/// via ExitingBlock.
LLVM_ABI unsigned
getSmallConstantTripMultiple(const Loop *L, const BasicBlock *ExitingBlock);
/// The terms "backedge taken count" and "exit count" are used
/// interchangeably to refer to the number of times the backedge of a loop
/// has executed before the loop is exited.
enum ExitCountKind {
/// An expression exactly describing the number of times the backedge has
/// executed when a loop is exited.
Exact,
/// A constant which provides an upper bound on the exact trip count.
ConstantMaximum,
/// An expression which provides an upper bound on the exact trip count.
SymbolicMaximum,
};
/// Return the number of times the backedge executes before the given exit
/// would be taken; if not exactly computable, return SCEVCouldNotCompute.
/// For a single exit loop, this value is equivelent to the result of
/// getBackedgeTakenCount. The loop is guaranteed to exit (via *some* exit)
/// before the backedge is executed (ExitCount + 1) times. Note that there
/// is no guarantee about *which* exit is taken on the exiting iteration.
LLVM_ABI const SCEV *getExitCount(const Loop *L,
const BasicBlock *ExitingBlock,
ExitCountKind Kind = Exact);
/// Same as above except this uses the predicated backedge taken info and
/// may require predicates.
LLVM_ABI const SCEV *
getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock,
SmallVectorImpl<const SCEVPredicate *> *Predicates,
ExitCountKind Kind = Exact);
/// If the specified loop has a predictable backedge-taken count, return it,
/// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
/// the number of times the loop header will be branched to from within the
/// loop, assuming there are no abnormal exists like exception throws. This is
/// one less than the trip count of the loop, since it doesn't count the first
/// iteration, when the header is branched to from outside the loop.
///
/// Note that it is not valid to call this method on a loop without a
/// loop-invariant backedge-taken count (see
/// hasLoopInvariantBackedgeTakenCount).
LLVM_ABI const SCEV *getBackedgeTakenCount(const Loop *L,
ExitCountKind Kind = Exact);
/// Similar to getBackedgeTakenCount, except it will add a set of
/// SCEV predicates to Predicates that are required to be true in order for
/// the answer to be correct. Predicates can be checked with run-time
/// checks and can be used to perform loop versioning.
LLVM_ABI const SCEV *getPredicatedBackedgeTakenCount(
const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
/// When successful, this returns a SCEVConstant that is greater than or equal
/// to (i.e. a "conservative over-approximation") of the value returend by
/// getBackedgeTakenCount. If such a value cannot be computed, it returns the
/// SCEVCouldNotCompute object.
const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
return getBackedgeTakenCount(L, ConstantMaximum);
}
/// Similar to getConstantMaxBackedgeTakenCount, except it will add a set of
/// SCEV predicates to Predicates that are required to be true in order for
/// the answer to be correct. Predicates can be checked with run-time
/// checks and can be used to perform loop versioning.
LLVM_ABI const SCEV *getPredicatedConstantMaxBackedgeTakenCount(
const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
/// When successful, this returns a SCEV that is greater than or equal
/// to (i.e. a "conservative over-approximation") of the value returend by
/// getBackedgeTakenCount. If such a value cannot be computed, it returns the
/// SCEVCouldNotCompute object.
const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
return getBackedgeTakenCount(L, SymbolicMaximum);
}
/// Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of
/// SCEV predicates to Predicates that are required to be true in order for
/// the answer to be correct. Predicates can be checked with run-time
/// checks and can be used to perform loop versioning.
LLVM_ABI const SCEV *getPredicatedSymbolicMaxBackedgeTakenCount(
const Loop *L, SmallVectorImpl<const SCEVPredicate *> &Predicates);
/// Return true if the backedge taken count is either the value returned by
/// getConstantMaxBackedgeTakenCount or zero.
LLVM_ABI bool isBackedgeTakenCountMaxOrZero(const Loop *L);
/// Return true if the specified loop has an analyzable loop-invariant
/// backedge-taken count.
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
// This method should be called by the client when it made any change that
// would invalidate SCEV's answers, and the client wants to remove all loop
// information held internally by ScalarEvolution. This is intended to be used
// when the alternative to forget a loop is too expensive (i.e. large loop
// bodies).
LLVM_ABI void forgetAllLoops();
/// This method should be called by the client when it has changed a loop in
/// a way that may effect ScalarEvolution's ability to compute a trip count,
/// or if the loop is deleted. This call is potentially expensive for large
/// loop bodies.
LLVM_ABI void forgetLoop(const Loop *L);
// This method invokes forgetLoop for the outermost loop of the given loop
// \p L, making ScalarEvolution forget about all this subtree. This needs to
// be done whenever we make a transform that may affect the parameters of the
// outer loop, such as exit counts for branches.
LLVM_ABI void forgetTopmostLoop(const Loop *L);
/// This method should be called by the client when it has changed a value
/// in a way that may effect its value, or which may disconnect it from a
/// def-use chain linking it to a loop.
LLVM_ABI void forgetValue(Value *V);
/// Forget LCSSA phi node V of loop L to which a new predecessor was added,
/// such that it may no longer be trivial.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V);
/// Called when the client has changed the disposition of values in
/// this loop.
///
/// We don't have a way to invalidate per-loop dispositions. Clear and
/// recompute is simpler.
LLVM_ABI void forgetLoopDispositions();
/// Called when the client has changed the disposition of values in
/// a loop or block.
///
/// We don't have a way to invalidate per-loop/per-block dispositions. Clear
/// and recompute is simpler.
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V = nullptr);
/// Determine the minimum number of zero bits that S is guaranteed to end in
/// (at every loop iteration). It is, at the same time, the minimum number
/// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
/// If S is guaranteed to be 0, it returns the bitwidth of S.
LLVM_ABI uint32_t getMinTrailingZeros(const SCEV *S);
/// Returns the max constant multiple of S.
LLVM_ABI APInt getConstantMultiple(const SCEV *S);
// Returns the max constant multiple of S. If S is exactly 0, return 1.
LLVM_ABI APInt getNonZeroConstantMultiple(const SCEV *S);
/// Determine the unsigned range for a particular SCEV.
/// NOTE: This returns a copy of the reference returned by getRangeRef.
ConstantRange getUnsignedRange(const SCEV *S) {
return getRangeRef(S, HINT_RANGE_UNSIGNED);
}
/// Determine the min of the unsigned range for a particular SCEV.
APInt getUnsignedRangeMin(const SCEV *S) {
return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
}
/// Determine the max of the unsigned range for a particular SCEV.
APInt getUnsignedRangeMax(const SCEV *S) {
return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
}
/// Determine the signed range for a particular SCEV.
/// NOTE: This returns a copy of the reference returned by getRangeRef.
ConstantRange getSignedRange(const SCEV *S) {
return getRangeRef(S, HINT_RANGE_SIGNED);
}
/// Determine the min of the signed range for a particular SCEV.
APInt getSignedRangeMin(const SCEV *S) {
return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
}
/// Determine the max of the signed range for a particular SCEV.
APInt getSignedRangeMax(const SCEV *S) {
return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
}
/// Test if the given expression is known to be negative.
LLVM_ABI bool isKnownNegative(const SCEV *S);
/// Test if the given expression is known to be positive.
LLVM_ABI bool isKnownPositive(const SCEV *S);
/// Test if the given expression is known to be non-negative.
LLVM_ABI bool isKnownNonNegative(const SCEV *S);
/// Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNonPositive(const SCEV *S);
/// Test if the given expression is known to be non-zero.
LLVM_ABI bool isKnownNonZero(const SCEV *S);
/// Test if the given expression is known to be a power of 2. OrNegative
/// allows matching negative power of 2s, and OrZero allows matching 0.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero = false,
bool OrNegative = false);
/// Check that \p S is a multiple of \p M. When \p S is an AddRecExpr, \p S is
/// a multiple of \p M if \p S starts with a multiple of \p M and at every
/// iteration step \p S only adds multiples of \p M. \p Assumptions records
/// the runtime predicates under which \p S is a multiple of \p M.
LLVM_ABI bool
isKnownMultipleOf(const SCEV *S, uint64_t M,
SmallVectorImpl<const SCEVPredicate *> &Assumptions);
/// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
/// \p S by substitution of all AddRec sub-expression related to loop \p L
/// with initial value of that SCEV. The second is obtained from \p S by
/// substitution of all AddRec sub-expressions related to loop \p L with post
/// increment of this AddRec in the loop \p L. In both cases all other AddRec
/// sub-expressions (not related to \p L) remain the same.
/// If the \p S contains non-invariant unknown SCEV the function returns
/// CouldNotCompute SCEV in both values of std::pair.
/// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
/// the function returns pair:
/// first = {0, +, 1}<L2>
/// second = {1, +, 1}<L1> + {0, +, 1}<L2>
/// We can see that for the first AddRec sub-expression it was replaced with
/// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
/// increment value) for the second one. In both cases AddRec expression
/// related to L2 remains the same.
LLVM_ABI std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop *L, const SCEV *S);
/// We'd like to check the predicate on every iteration of the most dominated
/// loop between loops used in LHS and RHS.
/// To do this we use the following list of steps:
/// 1. Collect set S all loops on which either LHS or RHS depend.
/// 2. If S is non-empty
/// a. Let PD be the element of S which is dominated by all other elements.
/// b. Let E(LHS) be value of LHS on entry of PD.
/// To get E(LHS), we should just take LHS and replace all AddRecs that are
/// attached to PD on with their entry values.
/// Define E(RHS) in the same way.
/// c. Let B(LHS) be value of L on backedge of PD.
/// To get B(LHS), we should just take LHS and replace all AddRecs that are
/// attached to PD on with their backedge values.
/// Define B(RHS) in the same way.
/// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
/// so we can assert on that.
/// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
/// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
LLVM_ABI bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Test if the given expression is known to satisfy the condition described
/// by Pred, LHS, and RHS.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Check whether the condition described by Pred, LHS, and RHS is true or
/// false. If we know it, return the evaluation of this condition. If neither
/// is proved, return std::nullopt.
LLVM_ABI std::optional<bool>
evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS);
/// Test if the given expression is known to satisfy the condition described
/// by Pred, LHS, and RHS in the given Context.
LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const Instruction *CtxI);
/// Check whether the condition described by Pred, LHS, and RHS is true or
/// false in the given \p Context. If we know it, return the evaluation of
/// this condition. If neither is proved, return std::nullopt.
LLVM_ABI std::optional<bool> evaluatePredicateAt(CmpPredicate Pred,
const SCEV *LHS,
const SCEV *RHS,
const Instruction *CtxI);
/// Test if the condition described by Pred, LHS, RHS is known to be true on
/// every iteration of the loop of the recurrency LHS.
LLVM_ABI bool isKnownOnEveryIteration(CmpPredicate Pred,
const SCEVAddRecExpr *LHS,
const SCEV *RHS);
/// Information about the number of loop iterations for which a loop exit's
/// branch condition evaluates to the not-taken path. This is a temporary
/// pair of exact and max expressions that are eventually summarized in
/// ExitNotTakenInfo and BackedgeTakenInfo.
struct ExitLimit {
const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
// times
const SCEV *SymbolicMaxNotTaken;
// Not taken either exactly ConstantMaxNotTaken or zero times
bool MaxOrZero = false;
/// A vector of predicate guards for this ExitLimit. The result is only
/// valid if all of the predicates in \c Predicates evaluate to 'true' at
/// run-time.
SmallVector<const SCEVPredicate *, 4> Predicates;
/// Construct either an exact exit limit from a constant, or an unknown
/// one from a SCEVCouldNotCompute. No other types of SCEVs are allowed
/// as arguments and asserts enforce that internally.
/*implicit*/ LLVM_ABI ExitLimit(const SCEV *E);
LLVM_ABI
ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
ArrayRef<ArrayRef<const SCEVPredicate *>> PredLists = {});
LLVM_ABI ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
ArrayRef<const SCEVPredicate *> PredList);
/// Test whether this ExitLimit contains any computed information, or
/// whether it's all SCEVCouldNotCompute values.
bool hasAnyInfo() const {
return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
!isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
}
/// Test whether this ExitLimit contains all information.
bool hasFullInfo() const {
return !isa<SCEVCouldNotCompute>(ExactNotTaken);
}
};
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a conditional branch of ExitCond.
///
/// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
/// branch. In this case, we can assume that the loop exits only if the
/// condition is true and can infer that failing to meet the condition prior
/// to integer wraparound results in undefined behavior.
///
/// If \p AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
bool ExitIfTrue,
bool ControlsOnlyExit,
bool AllowPredicates = false);
/// A predicate is said to be monotonically increasing if may go from being
/// false to being true as the loop iterates, but never the other way
/// around. A predicate is said to be monotonically decreasing if may go
/// from being true to being false as the loop iterates, but never the other
/// way around.
enum MonotonicPredicateType {
MonotonicallyIncreasing,
MonotonicallyDecreasing
};
/// If, for all loop invariant X, the predicate "LHS `Pred` X" is
/// monotonically increasing or decreasing, returns
/// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
/// respectively. If we could not prove either of these facts, returns
/// std::nullopt.
LLVM_ABI std::optional<MonotonicPredicateType>
getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred);
struct LoopInvariantPredicate {
CmpPredicate Pred;
const SCEV *LHS;
const SCEV *RHS;
LoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
: Pred(Pred), LHS(LHS), RHS(RHS) {}
};
/// If the result of the predicate LHS `Pred` RHS is loop invariant with
/// respect to L, return a LoopInvariantPredicate with LHS and RHS being
/// invariants, available at L's entry. Otherwise, return std::nullopt.
LLVM_ABI std::optional<LoopInvariantPredicate>
getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
const Loop *L, const Instruction *CtxI = nullptr);
/// If the result of the predicate LHS `Pred` RHS is loop invariant with
/// respect to L at given Context during at least first MaxIter iterations,
/// return a LoopInvariantPredicate with LHS and RHS being invariants,
/// available at L's entry. Otherwise, return std::nullopt. The predicate
/// should be the loop's exit condition.
LLVM_ABI std::optional<LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred,
const SCEV *LHS,
const SCEV *RHS, const Loop *L,
const Instruction *CtxI,
const SCEV *MaxIter);
LLVM_ABI std::optional<LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterationsImpl(
CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
const Instruction *CtxI, const SCEV *MaxIter);
/// Simplify LHS and RHS in a comparison with predicate Pred. Return true
/// iff any changes were made. If the operands are provably equal or
/// unequal, LHS and RHS are set to the same value and Pred is set to either
/// ICMP_EQ or ICMP_NE.
LLVM_ABI bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS,
const SCEV *&RHS, unsigned Depth = 0);
/// Return the "disposition" of the given SCEV with respect to the given
/// loop.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
/// Return true if the value of the given SCEV is unchanging in the
/// specified loop.
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L);
/// Determine if the SCEV can be evaluated at loop's entry. It is true if it
/// doesn't depend on a SCEVUnknown of an instruction which is dominated by
/// the header of loop L.
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
/// Return true if the given SCEV changes value in a known way in the
/// specified loop. This property being true implies that the value is
/// variant in the loop AND that we can emit an expression to compute the
/// value of the expression at any particular loop iteration.
LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
/// Return the "disposition" of the given SCEV with respect to the given
/// block.
LLVM_ABI BlockDisposition getBlockDisposition(const SCEV *S,
const BasicBlock *BB);
/// Return true if elements that makes up the given SCEV dominate the
/// specified basic block.
LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB);
/// Return true if elements that makes up the given SCEV properly dominate
/// the specified basic block.
LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB);
/// Test whether the given SCEV has Op as a direct or indirect operand.
LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const;
/// Return the size of an element read or written by Inst.
LLVM_ABI const SCEV *getElementSize(Instruction *Inst);
LLVM_ABI void print(raw_ostream &OS) const;
LLVM_ABI void verify() const;
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv);
/// Return the DataLayout associated with the module this SCEV instance is
/// operating on.
const DataLayout &getDataLayout() const { return DL; }
LLVM_ABI const SCEVPredicate *getEqualPredicate(const SCEV *LHS,
const SCEV *RHS);
LLVM_ABI const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
const SCEV *LHS,
const SCEV *RHS);
LLVM_ABI const SCEVPredicate *
getWrapPredicate(const SCEVAddRecExpr *AR,
SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
/// Re-writes the SCEV according to the Predicates in \p A.
LLVM_ABI const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
const SCEVPredicate &A);
/// Tries to convert the \p S expression to an AddRec expression,
/// adding additional predicates to \p Preds as required.
LLVM_ABI const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
const SCEV *S, const Loop *L,
SmallVectorImpl<const SCEVPredicate *> &Preds);
/// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
/// constant, and std::nullopt if it isn't.
///
/// This is intended to be a cheaper version of getMinusSCEV. We can be
/// frugal here since we just bail out of actually constructing and
/// canonicalizing an expression in the cases where the result isn't going
/// to be a constant.
LLVM_ABI std::optional<APInt> computeConstantDifference(const SCEV *LHS,
const SCEV *RHS);
/// Update no-wrap flags of an AddRec. This may drop the cached info about
/// this AddRec (such as range info) in case if new flags may potentially
/// sharpen it.
LLVM_ABI void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
class LoopGuards {
DenseMap<const SCEV *, const SCEV *> RewriteMap;
bool PreserveNUW = false;
bool PreserveNSW = false;
ScalarEvolution &SE;
LoopGuards(ScalarEvolution &SE) : SE(SE) {}
/// Recursively collect loop guards in \p Guards, starting from
/// block \p Block with predecessor \p Pred. The intended starting point
/// is to collect from a loop header and its predecessor.
static void
collectFromBlock(ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
const BasicBlock *Block, const BasicBlock *Pred,
SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks,
unsigned Depth = 0);
/// Collect loop guards in \p Guards, starting from PHINode \p
/// Phi, by calling \p collectFromBlock on the incoming blocks of
/// \Phi and trying to merge the found constraints into a single
/// combined one for \p Phi.
static void collectFromPHI(
ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
const PHINode &Phi, SmallPtrSetImpl<const BasicBlock *> &VisitedBlocks,
SmallDenseMap<const BasicBlock *, LoopGuards> &IncomingGuards,
unsigned Depth);
public:
/// Collect rewrite map for loop guards for loop \p L, together with flags
/// indicating if NUW and NSW can be preserved during rewriting.
LLVM_ABI static LoopGuards collect(const Loop *L, ScalarEvolution &SE);
/// Try to apply the collected loop guards to \p Expr.
LLVM_ABI const SCEV *rewrite(const SCEV *Expr) const;
};
/// Try to apply information from loop guards for \p L to \p Expr.
LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
LLVM_ABI const SCEV *applyLoopGuards(const SCEV *Expr,
const LoopGuards &Guards);
/// Return true if the loop has no abnormal exits. That is, if the loop
/// is not infinite, it must exit through an explicit edge in the CFG.
/// (As opposed to either a) throwing out of the function or b) entering a
/// well defined infinite loop in some callee.)
bool loopHasNoAbnormalExits(const Loop *L) {
return getLoopProperties(L).HasNoAbnormalExits;
}
/// Return true if this loop is finite by assumption. That is,
/// to be infinite, it must also be undefined.
LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L);
/// Return the set of Values that, if poison, will definitively result in S
/// being poison as well. The returned set may be incomplete, i.e. there can
/// be additional Values that also result in S being poison.
LLVM_ABI void
getPoisonGeneratingValues(SmallPtrSetImpl<const Value *> &Result,
const SCEV *S);
/// Check whether it is poison-safe to represent the expression S using the
/// instruction I. If such a replacement is performed, the poison flags of
/// instructions in DropPoisonGeneratingInsts must be dropped.
LLVM_ABI bool canReuseInstruction(
const SCEV *S, Instruction *I,
SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
class FoldID {
const SCEV *Op = nullptr;
const Type *Ty = nullptr;
unsigned short C;
public:
FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
assert(Op);
assert(Ty);
}
FoldID(unsigned short C) : C(C) {}
unsigned computeHash() const {
return detail::combineHashValue(
C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
reinterpret_cast<uintptr_t>(Ty)));
}
bool operator==(const FoldID &RHS) const {
return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
}
};
private:
/// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
/// Value is deleted.
class LLVM_ABI SCEVCallbackVH final : public CallbackVH {
ScalarEvolution *SE;
void deleted() override;
void allUsesReplacedWith(Value *New) override;
public:
SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
};
friend class SCEVCallbackVH;
friend class SCEVExpander;
friend class SCEVUnknown;
/// The function we are analyzing.
Function &F;
/// Data layout of the module.
const DataLayout &DL;
/// Does the module have any calls to the llvm.experimental.guard intrinsic
/// at all? If this is false, we avoid doing work that will only help if
/// thare are guards present in the IR.
bool HasGuards;
/// The target library information for the target we are targeting.
TargetLibraryInfo &TLI;
/// The tracker for \@llvm.assume intrinsics in this function.
AssumptionCache &AC;
/// The dominator tree.
DominatorTree &DT;
/// The loop information for the function we are currently analyzing.
LoopInfo &LI;
/// This SCEV is used to represent unknown trip counts and things.
std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
/// The type for HasRecMap.
using HasRecMapType = DenseMap<const SCEV *, bool>;
/// This is a cache to record whether a SCEV contains any scAddRecExpr.
HasRecMapType HasRecMap;
/// The type for ExprValueMap.
using ValueSetVector = SmallSetVector<Value *, 4>;
using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
/// ExprValueMap -- This map records the original values from which
/// the SCEV expr is generated from.
ExprValueMapType ExprValueMap;
/// The type for ValueExprMap.
using ValueExprMapType =
DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
/// This is a cache of the values we have analyzed so far.
ValueExprMapType ValueExprMap;
/// This is a cache for expressions that got folded to a different existing
/// SCEV.
DenseMap<FoldID, const SCEV *> FoldCache;
DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
/// Mark predicate values currently being processed by isImpliedCond.
SmallPtrSet<const Value *, 6> PendingLoopPredicates;
/// Mark SCEVUnknown Phis currently being processed by getRangeRef.
SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
/// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
// Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
SmallPtrSet<const PHINode *, 6> PendingMerges;
/// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
/// conditions dominating the backedge of a loop.
bool WalkingBEDominatingConds = false;
/// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
/// predicate by splitting it into a set of independent predicates.
bool ProvingSplitPredicate = false;
/// Memoized values for the getConstantMultiple
DenseMap<const SCEV *, APInt> ConstantMultipleCache;
/// Return the Value set from which the SCEV expr is generated.
ArrayRef<Value *> getSCEVValues(const SCEV *S);
/// Private helper method for the getConstantMultiple method.
APInt getConstantMultipleImpl(const SCEV *S);
/// Information about the number of times a particular loop exit may be
/// reached before exiting the loop.
struct ExitNotTakenInfo {
PoisoningVH<BasicBlock> ExitingBlock;
const SCEV *ExactNotTaken;
const SCEV *ConstantMaxNotTaken;
const SCEV *SymbolicMaxNotTaken;
SmallVector<const SCEVPredicate *, 4> Predicates;
explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
const SCEV *ExactNotTaken,
const SCEV *ConstantMaxNotTaken,
const SCEV *SymbolicMaxNotTaken,
ArrayRef<const SCEVPredicate *> Predicates)
: ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
ConstantMaxNotTaken(ConstantMaxNotTaken),
SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
bool hasAlwaysTruePredicate() const {
return Predicates.empty();
}
};
/// Information about the backedge-taken count of a loop. This currently
/// includes an exact count and a maximum count.
///
class BackedgeTakenInfo {
friend class ScalarEvolution;
/// A list of computable exits and their not-taken counts. Loops almost
/// never have more than one computable exit.
SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
/// Expression indicating the least constant maximum backedge-taken count of
/// the loop that is known, or a SCEVCouldNotCompute. This expression is
/// only valid if the predicates associated with all loop exits are true.
const SCEV *ConstantMax = nullptr;
/// Indicating if \c ExitNotTaken has an element for every exiting block in
/// the loop.
bool IsComplete = false;
/// Expression indicating the least maximum backedge-taken count of the loop
/// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
const SCEV *SymbolicMax = nullptr;
/// True iff the backedge is taken either exactly Max or zero times.
bool MaxOrZero = false;
bool isComplete() const { return IsComplete; }
const SCEV *getConstantMax() const { return ConstantMax; }
LLVM_ABI const ExitNotTakenInfo *getExitNotTaken(
const BasicBlock *ExitingBlock,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
public:
BackedgeTakenInfo() = default;
BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
/// Initialize BackedgeTakenInfo from a list of exact exit counts.
LLVM_ABI BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts,
bool IsComplete, const SCEV *ConstantMax,
bool MaxOrZero);
/// Test whether this BackedgeTakenInfo contains any computed information,
/// or whether it's all SCEVCouldNotCompute values.
bool hasAnyInfo() const {
return !ExitNotTaken.empty() ||
!isa<SCEVCouldNotCompute>(getConstantMax());
}
/// Test whether this BackedgeTakenInfo contains complete information.
bool hasFullInfo() const { return isComplete(); }
/// Return an expression indicating the exact *backedge-taken*
/// count of the loop if it is known or SCEVCouldNotCompute
/// otherwise. If execution makes it to the backedge on every
/// iteration (i.e. there are no abnormal exists like exception
/// throws and thread exits) then this is the number of times the
/// loop header will execute minus one.
///
/// If the SCEV predicate associated with the answer can be different
/// from AlwaysTrue, we must add a (non null) Predicates argument.
/// The SCEV predicate associated with the answer will be added to
/// Predicates. A run-time check needs to be emitted for the SCEV
/// predicate in order for the answer to be valid.
///
/// Note that we should always know if we need to pass a predicate
/// argument or not from the way the ExitCounts vector was computed.
/// If we allowed SCEV predicates to be generated when populating this
/// vector, this information can contain them and therefore a
/// SCEVPredicate argument should be added to getExact.
LLVM_ABI const SCEV *getExact(
const Loop *L, ScalarEvolution *SE,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
/// Return the number of times this loop exit may fall through to the back
/// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
/// this block before this number of iterations, but may exit via another
/// block. If \p Predicates is null the function returns CouldNotCompute if
/// predicates are required, otherwise it fills in the required predicates.
const SCEV *getExact(
const BasicBlock *ExitingBlock, ScalarEvolution *SE,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
return ENT->ExactNotTaken;
else
return SE->getCouldNotCompute();
}
/// Get the constant max backedge taken count for the loop.
LLVM_ABI const SCEV *getConstantMax(
ScalarEvolution *SE,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const;
/// Get the constant max backedge taken count for the particular loop exit.
const SCEV *getConstantMax(
const BasicBlock *ExitingBlock, ScalarEvolution *SE,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
return ENT->ConstantMaxNotTaken;
else
return SE->getCouldNotCompute();
}
/// Get the symbolic max backedge taken count for the loop.
LLVM_ABI const SCEV *getSymbolicMax(
const Loop *L, ScalarEvolution *SE,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr);
/// Get the symbolic max backedge taken count for the particular loop exit.
const SCEV *getSymbolicMax(
const BasicBlock *ExitingBlock, ScalarEvolution *SE,
SmallVectorImpl<const SCEVPredicate *> *Predicates = nullptr) const {
if (auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
return ENT->SymbolicMaxNotTaken;
else
return SE->getCouldNotCompute();
}
/// Return true if the number of times this backedge is taken is either the
/// value returned by getConstantMax or zero.
LLVM_ABI bool isConstantMaxOrZero(ScalarEvolution *SE) const;
};
/// Cache the backedge-taken count of the loops for this function as they
/// are computed.
DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
/// Cache the predicated backedge-taken count of the loops for this
/// function as they are computed.
DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
/// Loops whose backedge taken counts directly use this non-constant SCEV.
DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
BECountUsers;
/// This map contains entries for all of the PHI instructions that we
/// attempt to compute constant evolutions for. This allows us to avoid
/// potentially expensive recomputation of these properties. An instruction
/// maps to null if we are unable to compute its exit value.
DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
/// This map contains entries for all the expressions that we attempt to
/// compute getSCEVAtScope information for, which can be expensive in
/// extreme cases.
DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
ValuesAtScopes;
/// Reverse map for invalidation purposes: Stores of which SCEV and which
/// loop this is the value-at-scope of.
DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
ValuesAtScopesUsers;
/// Memoized computeLoopDisposition results.
DenseMap<const SCEV *,
SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
LoopDispositions;
struct LoopProperties {
/// Set to true if the loop contains no instruction that can abnormally exit
/// the loop (i.e. via throwing an exception, by terminating the thread
/// cleanly or by infinite looping in a called function). Strictly
/// speaking, the last one is not leaving the loop, but is identical to
/// leaving the loop for reasoning about undefined behavior.
bool HasNoAbnormalExits;
/// Set to true if the loop contains no instruction that can have side
/// effects (i.e. via throwing an exception, volatile or atomic access).
bool HasNoSideEffects;
};
/// Cache for \c getLoopProperties.
DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
/// Return a \c LoopProperties instance for \p L, creating one if necessary.
LLVM_ABI LoopProperties getLoopProperties(const Loop *L);
bool loopHasNoSideEffects(const Loop *L) {
return getLoopProperties(L).HasNoSideEffects;
}
/// Compute a LoopDisposition value.
LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
/// Memoized computeBlockDisposition results.
DenseMap<
const SCEV *,
SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
BlockDispositions;
/// Compute a BlockDisposition value.
BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// Stores all SCEV that use a given SCEV as its direct operand.
DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
/// Memoized results from getRange
DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
/// Memoized results from getRange
DenseMap<const SCEV *, ConstantRange> SignedRanges;
/// Used to parameterize getRange
enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
/// Set the memoized range for the given SCEV.
const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
ConstantRange CR) {
DenseMap<const SCEV *, ConstantRange> &Cache =
Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
auto Pair = Cache.insert_or_assign(S, std::move(CR));
return Pair.first->second;
}
/// Determine the range for a particular SCEV.
/// NOTE: This returns a reference to an entry in a cache. It must be
/// copied if its needed for longer.
LLVM_ABI const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
unsigned Depth = 0);
/// Determine the range for a particular SCEV, but evaluates ranges for
/// operands iteratively first.
const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
/// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
/// Helper for \c getRange.
ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
const APInt &MaxBECount);
/// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
/// Start,+,\p Step}<nw>.
ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
const SCEV *MaxBECount,
unsigned BitWidth,
RangeSignHint SignHint);
/// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
/// Step} by "factoring out" a ternary expression from the add recurrence.
/// Helper called by \c getRange.
ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
const APInt &MaxBECount);
/// If the unknown expression U corresponds to a simple recurrence, return
/// a constant range which represents the entire recurrence. Note that
/// *add* recurrences with loop invariant steps aren't represented by
/// SCEVUnknowns and thus don't use this mechanism.
ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
/// We know that there is no SCEV for the specified value. Analyze the
/// expression recursively.
const SCEV *createSCEV(Value *V);
/// We know that there is no SCEV for the specified value. Create a new SCEV
/// for \p V iteratively.
const SCEV *createSCEVIter(Value *V);
/// Collect operands of \p V for which SCEV expressions should be constructed
/// first. Returns a SCEV directly if it can be constructed trivially for \p
/// V.
const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
/// Returns SCEV for the first operand of a phi if all phi operands have
/// identical opcodes and operands.
const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN);
/// Provide the special handling we need to analyze PHI SCEVs.
const SCEV *createNodeForPHI(PHINode *PN);
/// Helper function called from createNodeForPHI.
const SCEV *createAddRecFromPHI(PHINode *PN);
/// A helper function for createAddRecFromPHI to handle simple cases.
const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
Value *StartValueV);
/// Helper function called from createNodeForPHI.
const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
/// Provide special handling for a select-like instruction (currently this
/// is either a select instruction or a phi node). \p Ty is the type of the
/// instruction being processed, that is assumed equivalent to
/// "Cond ? TrueVal : FalseVal".
std::optional<const SCEV *>
createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
Value *TrueVal, Value *FalseVal);
/// See if we can model this select-like instruction via umin_seq expression.
const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
Value *TrueVal,
Value *FalseVal);
/// Given a value \p V, which is a select-like instruction (currently this is
/// either a select instruction or a phi node), which is assumed equivalent to
/// Cond ? TrueVal : FalseVal
/// see if we can model it as a SCEV expression.
const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
Value *FalseVal);
/// Provide the special handling we need to analyze GEP SCEVs.
const SCEV *createNodeForGEP(GEPOperator *GEP);
/// Implementation code for getSCEVAtScope; called at most once for each
/// SCEV+Loop pair.
const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
/// Return the BackedgeTakenInfo for the given loop, lazily computing new
/// values if the loop hasn't been analyzed yet. The returned result is
/// guaranteed not to be predicated.
BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
/// Similar to getBackedgeTakenInfo, but will add predicates as required
/// with the purpose of returning complete information.
BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
/// Compute the number of times the specified loop will iterate.
/// If AllowPredicates is set, we will create new SCEV predicates as
/// necessary in order to return an exact answer.
BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will
/// execute if it exits via the specified block. If AllowPredicates is set,
/// this call will try to use a minimal set of SCEV predicates in order to
/// return an exact answer.
ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
bool IsOnlyExit, bool AllowPredicates = false);
// Helper functions for computeExitLimitFromCond to avoid exponential time
// complexity.
class ExitLimitCache {
// It may look like we need key on the whole (L, ExitIfTrue,
// ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
// computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
// vary the in \c ExitCond and \c ControlsOnlyExit parameters. We remember
// the initial values of the other values to assert our assumption.
SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
const Loop *L;
bool ExitIfTrue;
bool AllowPredicates;
public:
ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
: L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
LLVM_ABI std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
bool ExitIfTrue,
bool ControlsOnlyExit,
bool AllowPredicates);
LLVM_ABI void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
bool ControlsOnlyExit, bool AllowPredicates,
const ExitLimit &EL);
};
using ExitLimitCacheTy = ExitLimitCache;
ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
const Loop *L, Value *ExitCond,
bool ExitIfTrue,
bool ControlsOnlyExit,
bool AllowPredicates);
ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
Value *ExitCond, bool ExitIfTrue,
bool ControlsOnlyExit,
bool AllowPredicates);
std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
bool ControlsOnlyExit, bool AllowPredicates);
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a conditional branch of the ICmpInst
/// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
/// to use a minimal set of SCEV predicates in order to return an exact
/// answer.
ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
bool ExitIfTrue,
bool IsSubExpr,
bool AllowPredicates = false);
/// Variant of previous which takes the components representing an ICmp
/// as opposed to the ICmpInst itself. Note that the prior version can
/// return more precise results in some cases and is preferred when caller
/// has a materialized ICmp.
ExitLimit computeExitLimitFromICmp(const Loop *L, CmpPredicate Pred,
const SCEV *LHS, const SCEV *RHS,
bool IsSubExpr,
bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a switch with a single exiting case
/// to ExitingBB.
ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
SwitchInst *Switch,
BasicBlock *ExitingBB,
bool IsSubExpr);
/// Compute the exit limit of a loop that is controlled by a
/// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
/// count in these cases (since SCEV has no way of expressing them), but we
/// can still sometimes compute an upper bound.
///
/// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
/// RHS`.
ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
ICmpInst::Predicate Pred);
/// If the loop is known to execute a constant number of times (the
/// condition evolves only from constants), try to evaluate a few iterations
/// of the loop until we get the exit condition gets a value of ExitWhen
/// (true or false). If we cannot evaluate the exit count of the loop,
/// return CouldNotCompute.
const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
bool ExitWhen);
/// Return the number of times an exit condition comparing the specified
/// value to zero will execute. If not computable, return CouldNotCompute.
/// If AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
bool AllowPredicates = false);
/// Return the number of times an exit condition checking the specified
/// value for nonzero will execute. If not computable, return
/// CouldNotCompute.
ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
/// Return the number of times an exit condition containing the specified
/// less-than comparison will execute. If not computable, return
/// CouldNotCompute.
///
/// \p isSigned specifies whether the less-than is signed.
///
/// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
/// the branch (loops exits only if condition is true). In this case, we can
/// use NoWrapFlags to skip overflow checks.
///
/// If \p AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
bool isSigned, bool ControlsOnlyExit,
bool AllowPredicates = false);
ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
bool isSigned, bool IsSubExpr,
bool AllowPredicates = false);
/// Return a predecessor of BB (which may not be an immediate predecessor)
/// which has exactly one successor from which BB is reachable, or null if
/// no such block is found.
std::pair<const BasicBlock *, const BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the given FoundCondValue value evaluates to true in given
/// Context. If Context is nullptr, then the found predicate is true
/// everywhere. LHS and FoundLHS may have different type width.
LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const Value *FoundCondValue,
bool Inverse,
const Instruction *Context = nullptr);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the given FoundCondValue value evaluates to true in given
/// Context. If Context is nullptr, then the found predicate is true
/// everywhere. LHS and FoundLHS must have same type width.
LLVM_ABI bool isImpliedCondBalancedTypes(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS,
CmpPredicate FoundPred,
const SCEV *FoundLHS,
const SCEV *FoundRHS,
const Instruction *CtxI);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
/// true in given Context. If Context is nullptr, then the found predicate is
/// true everywhere.
LLVM_ABI bool isImpliedCond(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, CmpPredicate FoundPred,
const SCEV *FoundLHS, const SCEV *FoundRHS,
const Instruction *Context = nullptr);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true in given Context. If Context is nullptr, then the found predicate is
/// true everywhere.
bool isImpliedCondOperands(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const SCEV *FoundLHS,
const SCEV *FoundRHS,
const Instruction *Context = nullptr);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true. Here LHS is an operation that includes FoundLHS as one of its
/// arguments.
bool isImpliedViaOperations(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const SCEV *FoundLHS,
const SCEV *FoundRHS, unsigned Depth = 0);
/// Test whether the condition described by Pred, LHS, and RHS is true.
/// Use only simple non-recursive types of checks, such as range analysis etc.
bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
bool isImpliedCondOperandsHelper(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true. Utility function used by isImpliedCondOperands. Tries to get
/// cases like "X `sgt` 0 => X - 1 `sgt` -1".
bool isImpliedCondOperandsViaRanges(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, CmpPredicate FoundPred,
const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
/// by a call to @llvm.experimental.guard in \p BB.
bool isImpliedViaGuard(const BasicBlock *BB, CmpPredicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
///
/// This routine tries to rule out certain kinds of integer overflow, and
/// then tries to reason about arithmetic properties of the predicates.
bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
///
/// This routine tries to weaken the known condition basing on fact that
/// FoundLHS is an AddRec.
bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS,
const Instruction *CtxI);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
///
/// This routine tries to figure out predicate for Phis which are SCEVUnknown
/// if it is true for every possible incoming value from their respective
/// basic blocks.
bool isImpliedViaMerge(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS, const SCEV *FoundRHS,
unsigned Depth);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
///
/// This routine tries to reason about shifts.
bool isImpliedCondOperandsViaShift(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS, const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// If we know that the specified Phi is in the header of its containing
/// loop, we know the loop executes a constant number of times, and the PHI
/// node is just a recurrence involving constants, fold it.
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
const Loop *L);
/// Test if the given expression is known to satisfy the condition described
/// by Pred and the known constant ranges of LHS and RHS.
bool isKnownPredicateViaConstantRanges(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Try to prove the condition described by "LHS Pred RHS" by ruling out
/// integer overflow.
///
/// For instance, this will return true for "A s< (A + C)<nsw>" if C is
/// positive.
bool isKnownPredicateViaNoOverflow(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
/// prove them individually.
bool isKnownPredicateViaSplitting(CmpPredicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Try to match the Expr as "(L + R)<Flags>".
bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
SCEV::NoWrapFlags &Flags);
/// Forget predicated/non-predicated backedge taken counts for the given loop.
void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
/// Drop memoized information for all \p SCEVs.
void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
/// Helper for forgetMemoizedResults.
void forgetMemoizedResultsImpl(const SCEV *S);
/// Iterate over instructions in \p Worklist and their users. Erase entries
/// from ValueExprMap and collect SCEV expressions in \p ToForget
void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
SmallPtrSetImpl<Instruction *> &Visited,
SmallVectorImpl<const SCEV *> &ToForget);
/// Erase Value from ValueExprMap and ExprValueMap.
void eraseValueFromMap(Value *V);
/// Insert V to S mapping into ValueExprMap and ExprValueMap.
void insertValueToMap(Value *V, const SCEV *S);
/// Return false iff given SCEV contains a SCEVUnknown with NULL value-
/// pointer.
bool checkValidity(const SCEV *S) const;
/// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
/// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
/// equivalent to proving no signed (resp. unsigned) wrap in
/// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
/// (resp. `SCEVZeroExtendExpr`).
template <typename ExtendOpTy>
bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
const Loop *L);
/// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
/// Try to prove NSW on \p AR by proving facts about conditions known on
/// entry and backedge.
SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
/// Try to prove NUW on \p AR by proving facts about conditions known on
/// entry and backedge.
SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
std::optional<MonotonicPredicateType>
getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred);
/// Return SCEV no-wrap flags that can be proven based on reasoning about
/// how poison produced from no-wrap flags on this value (e.g. a nuw add)
/// would trigger undefined behavior on overflow.
SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
/// Return a scope which provides an upper bound on the defining scope of
/// 'S'. Specifically, return the first instruction in said bounding scope.
/// Return nullptr if the scope is trivial (function entry).
/// (See scope definition rules associated with flag discussion above)
const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
/// Return a scope which provides an upper bound on the defining scope for
/// a SCEV with the operands in Ops. The outparam Precise is set if the
/// bound found is a precise bound (i.e. must be the defining scope.)
const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
bool &Precise);
/// Wrapper around the above for cases which don't care if the bound
/// is precise.
const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
/// Given two instructions in the same function, return true if we can
/// prove B must execute given A executes.
bool isGuaranteedToTransferExecutionTo(const Instruction *A,
const Instruction *B);
/// Returns true if \p Op is guaranteed not to cause immediate UB.
bool isGuaranteedNotToCauseUB(const SCEV *Op);
/// Returns true if \p Op is guaranteed to not be poison.
static bool isGuaranteedNotToBePoison(const SCEV *Op);
/// Return true if the SCEV corresponding to \p I is never poison. Proving
/// this is more complex than proving that just \p I is never poison, since
/// SCEV commons expressions across control flow, and you can have cases
/// like:
///
/// idx0 = a + b;
/// ptr[idx0] = 100;
/// if (<condition>) {
/// idx1 = a +nsw b;
/// ptr[idx1] = 200;
/// }
///
/// where the SCEV expression (+ a b) is guaranteed to not be poison (and
/// hence not sign-overflow) only if "<condition>" is true. Since both
/// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
/// it is not okay to annotate (+ a b) with <nsw> in the above example.
bool isSCEVExprNeverPoison(const Instruction *I);
/// This is like \c isSCEVExprNeverPoison but it specifically works for
/// instructions that will get mapped to SCEV add recurrences. Return true
/// if \p I will never generate poison under the assumption that \p I is an
/// add recurrence on the loop \p L.
bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
/// Similar to createAddRecFromPHI, but with the additional flexibility of
/// suggesting runtime overflow checks in case casts are encountered.
/// If successful, the analysis records that for this loop, \p SymbolicPHI,
/// which is the UnknownSCEV currently representing the PHI, can be rewritten
/// into an AddRec, assuming some predicates; The function then returns the
/// AddRec and the predicates as a pair, and caches this pair in
/// PredicatedSCEVRewrites.
/// If the analysis is not successful, a mapping from the \p SymbolicPHI to
/// itself (with no predicates) is recorded, and a nullptr with an empty
/// predicates vector is returned as a pair.
std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
/// Compute the maximum backedge count based on the range of values
/// permitted by Start, End, and Stride. This is for loops of the form
/// {Start, +, Stride} LT End.
///
/// Preconditions:
/// * the induction variable is known to be positive.
/// * the induction variable is assumed not to overflow (i.e. either it
/// actually doesn't, or we'd have to immediately execute UB)
/// We *don't* assert these preconditions so please be careful.
const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
const SCEV *End, unsigned BitWidth,
bool IsSigned);
/// Verify if an linear IV with positive stride can overflow when in a
/// less-than comparison, knowing the invariant term of the comparison,
/// the stride.
bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
/// Verify if an linear IV with negative stride can overflow when in a
/// greater-than comparison, knowing the invariant term of the comparison,
/// the stride.
bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
/// Get add expr already created or create a new one.
const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
SCEV::NoWrapFlags Flags);
/// Get mul expr already created or create a new one.
const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
SCEV::NoWrapFlags Flags);
// Get addrec expr already created or create a new one.
const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
const Loop *L, SCEV::NoWrapFlags Flags);
/// Return x if \p Val is f(x) where f is a 1-1 function.
const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
/// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
/// A loop is considered "used" by an expression if it contains
/// an add rec on said loop.
void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
/// Try to match the pattern generated by getURemExpr(A, B). If successful,
/// Assign A and B to LHS and RHS, respectively.
LLVM_ABI bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
/// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
/// `UniqueSCEVs`. Return if found, else nullptr.
SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
/// Get reachable blocks in this function, making limited use of SCEV
/// reasoning about conditions.
void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
Function &F);
/// Return the given SCEV expression with a new set of operands.
/// This preserves the origial nowrap flags.
const SCEV *getWithOperands(const SCEV *S,
SmallVectorImpl<const SCEV *> &NewOps);
FoldingSet<SCEV> UniqueSCEVs;
FoldingSet<SCEVPredicate> UniquePreds;
BumpPtrAllocator SCEVAllocator;
/// This maps loops to a list of addrecs that directly use said loop.
DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
/// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
/// they can be rewritten into under certain predicates.
DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
PredicatedSCEVRewrites;
/// Set of AddRecs for which proving NUW via an induction has already been
/// tried.
SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
/// Set of AddRecs for which proving NSW via an induction has already been
/// tried.
SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
/// The head of a linked list of all SCEVUnknown values that have been
/// allocated. This is used by releaseMemory to locate them all and call
/// their destructors.
SCEVUnknown *FirstUnknown = nullptr;
};
/// Analysis pass that exposes the \c ScalarEvolution for a function.
class ScalarEvolutionAnalysis
: public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
LLVM_ABI static AnalysisKey Key;
public:
using Result = ScalarEvolution;
LLVM_ABI ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
};
/// Verifier pass for the \c ScalarEvolutionAnalysis results.
class ScalarEvolutionVerifierPass
: public PassInfoMixin<ScalarEvolutionVerifierPass> {
public:
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
static bool isRequired() { return true; }
};
/// Printer pass for the \c ScalarEvolutionAnalysis results.
class ScalarEvolutionPrinterPass
: public PassInfoMixin<ScalarEvolutionPrinterPass> {
raw_ostream &OS;
public:
explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
static bool isRequired() { return true; }
};
class LLVM_ABI ScalarEvolutionWrapperPass : public FunctionPass {
std::unique_ptr<ScalarEvolution> SE;
public:
static char ID;
ScalarEvolutionWrapperPass();
ScalarEvolution &getSE() { return *SE; }
const ScalarEvolution &getSE() const { return *SE; }
bool runOnFunction(Function &F) override;
void releaseMemory() override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &OS, const Module * = nullptr) const override;
void verifyAnalysis() const override;
};
/// An interface layer with SCEV used to manage how we see SCEV expressions
/// for values in the context of existing predicates. We can add new
/// predicates, but we cannot remove them.
///
/// This layer has multiple purposes:
/// - provides a simple interface for SCEV versioning.
/// - guarantees that the order of transformations applied on a SCEV
/// expression for a single Value is consistent across two different
/// getSCEV calls. This means that, for example, once we've obtained
/// an AddRec expression for a certain value through expression
/// rewriting, we will continue to get an AddRec expression for that
/// Value.
/// - lowers the number of expression rewrites.
class PredicatedScalarEvolution {
public:
LLVM_ABI PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
LLVM_ABI const SCEVPredicate &getPredicate() const;
/// Returns the SCEV expression of V, in the context of the current SCEV
/// predicate. The order of transformations applied on the expression of V
/// returned by ScalarEvolution is guaranteed to be preserved, even when
/// adding new predicates.
LLVM_ABI const SCEV *getSCEV(Value *V);
/// Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV *getBackedgeTakenCount();
/// Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV *getSymbolicMaxBackedgeTakenCount();
/// Returns the upper bound of the loop trip count as a normal unsigned
/// value, or 0 if the trip count is unknown.
LLVM_ABI unsigned getSmallConstantMaxTripCount();
/// Adds a new predicate.
LLVM_ABI void addPredicate(const SCEVPredicate &Pred);
/// Attempts to produce an AddRecExpr for V by adding additional SCEV
/// predicates. If we can't transform the expression into an AddRecExpr we
/// return nullptr and not add additional SCEV predicates to the current
/// context.
LLVM_ABI const SCEVAddRecExpr *getAsAddRec(Value *V);
/// Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V,
SCEVWrapPredicate::IncrementWrapFlags Flags);
/// Returns true if we've proved that V doesn't wrap by means of a SCEV
/// predicate.
LLVM_ABI bool hasNoOverflow(Value *V,
SCEVWrapPredicate::IncrementWrapFlags Flags);
/// Returns the ScalarEvolution analysis used.
ScalarEvolution *getSE() const { return &SE; }
/// We need to explicitly define the copy constructor because of FlagsMap.
LLVM_ABI PredicatedScalarEvolution(const PredicatedScalarEvolution &);
/// Print the SCEV mappings done by the Predicated Scalar Evolution.
/// The printed text is indented by \p Depth.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const;
/// Check if \p AR1 and \p AR2 are equal, while taking into account
/// Equal predicates in Preds.
LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
const SCEVAddRecExpr *AR2) const;
private:
/// Increments the version number of the predicate. This needs to be called
/// every time the SCEV predicate changes.
void updateGeneration();
/// Holds a SCEV and the version number of the SCEV predicate used to
/// perform the rewrite of the expression.
using RewriteEntry = std::pair<unsigned, const SCEV *>;
/// Maps a SCEV to the rewrite result of that SCEV at a certain version
/// number. If this number doesn't match the current Generation, we will
/// need to do a rewrite. To preserve the transformation order of previous
/// rewrites, we will rewrite the previous result instead of the original
/// SCEV.
DenseMap<const SCEV *, RewriteEntry> RewriteMap;
/// Records what NoWrap flags we've added to a Value *.
ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
/// The ScalarEvolution analysis.
ScalarEvolution &SE;
/// The analyzed Loop.
const Loop &L;
/// The SCEVPredicate that forms our context. We will rewrite all
/// expressions assuming that this predicate true.
std::unique_ptr<SCEVUnionPredicate> Preds;
/// Marks the version of the SCEV predicate used. When rewriting a SCEV
/// expression we mark it with the version of the predicate. We use this to
/// figure out if the predicate has changed from the last rewrite of the
/// SCEV. If so, we need to perform a new rewrite.
unsigned Generation = 0;
/// The backedge taken count.
const SCEV *BackedgeCount = nullptr;
/// The symbolic backedge taken count.
const SCEV *SymbolicMaxBackedgeCount = nullptr;
/// The constant max trip count for the loop.
std::optional<unsigned> SmallConstantMaxTripCount;
};
template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
static inline ScalarEvolution::FoldID getEmptyKey() {
ScalarEvolution::FoldID ID(0);
return ID;
}
static inline ScalarEvolution::FoldID getTombstoneKey() {
ScalarEvolution::FoldID ID(1);
return ID;
}
static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
return Val.computeHash();
}
static bool isEqual(const ScalarEvolution::FoldID &LHS,
const ScalarEvolution::FoldID &RHS) {
return LHS == RHS;
}
};
} // end namespace llvm
#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
|