1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>The LLVM Target-Independent Code Generator</title>
<link rel="stylesheet" href="llvm.css" type="text/css">
</head>
<body>
<div class="doc_title">
The LLVM Target-Independent Code Generator
</div>
<ol>
<li><a href="#introduction">Introduction</a>
<ul>
<li><a href="#required">Required components in the code generator</a></li>
<li><a href="#high-level-design">The high-level design of the code
generator</a></li>
<li><a href="#tablegen">Using TableGen for target description</a></li>
</ul>
</li>
<li><a href="#targetdesc">Target description classes</a>
<ul>
<li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
<li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
<li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
<li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
<li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
<li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
<li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
<li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
</ul>
</li>
<li><a href="#codegendesc">Machine code description classes</a>
<ul>
<li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
<li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
class</a></li>
<li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
</ul>
</li>
<li><a href="#codegenalgs">Target-independent code generation algorithms</a>
<ul>
<li><a href="#instselect">Instruction Selection</a>
<ul>
<li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
<li><a href="#selectiondag_process">SelectionDAG Code Generation
Process</a></li>
<li><a href="#selectiondag_build">Initial SelectionDAG
Construction</a></li>
<li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
<li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
<li><a href="#selectiondag_optimize">SelectionDAG Optimization
Phase: the DAG Combiner</a></li>
<li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
<li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
Phase</a></li>
<li><a href="#selectiondag_future">Future directions for the
SelectionDAG</a></li>
</ul></li>
<li><a href="#liveintervals">Live Intervals</a>
<ul>
<li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
<li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
</ul></li>
<li><a href="#regalloc">Register Allocation</a>
<ul>
<li><a href="#regAlloc_represent">How registers are represented in
LLVM</a></li>
<li><a href="#regAlloc_howTo">Mapping virtual registers to physical
registers</a></li>
<li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
<li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
<li><a href="#regAlloc_fold">Instruction folding</a></li>
<li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
</ul></li>
<li><a href="#codeemit">Code Emission</a>
<ul>
<li><a href="#codeemit_asm">Generating Assembly Code</a></li>
<li><a href="#codeemit_bin">Generating Binary Machine Code</a></li>
</ul></li>
</ul>
</li>
<li><a href="#targetimpls">Target-specific Implementation Notes</a>
<ul>
<li><a href="#tailcallopt">Tail call optimization</a></li>
<li><a href="#x86">The X86 backend</a></li>
<li><a href="#ppc">The PowerPC backend</a>
<ul>
<li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
<li><a href="#ppc_frame">Frame Layout</a></li>
<li><a href="#ppc_prolog">Prolog/Epilog</a></li>
<li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
</ul></li>
</ul></li>
</ol>
<div class="doc_author">
<p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
<a href="mailto:isanbard@gmail.com">Bill Wendling</a>,
<a href="mailto:pronesto@gmail.com">Fernando Magno Quintao
Pereira</a> and
<a href="mailto:jlaskey@mac.com">Jim Laskey</a></p>
</div>
<div class="doc_warning">
<p>Warning: This is a work in progress.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section">
<a name="introduction">Introduction</a>
</div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM target-independent code generator is a framework that provides a
suite of reusable components for translating the LLVM internal representation
to the machine code for a specified target—either in assembly form
(suitable for a static compiler) or in binary machine code format (usable for
a JIT compiler). The LLVM target-independent code generator consists of five
main components:</p>
<ol>
<li><a href="#targetdesc">Abstract target description</a> interfaces which
capture important properties about various aspects of the machine,
independently of how they will be used. These interfaces are defined in
<tt>include/llvm/Target/</tt>.</li>
<li>Classes used to represent the <a href="#codegendesc">machine code</a>
being generated for a target. These classes are intended to be abstract
enough to represent the machine code for <i>any</i> target machine. These
classes are defined in <tt>include/llvm/CodeGen/</tt>.</li>
<li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
various phases of native code generation (register allocation, scheduling,
stack frame representation, etc). This code lives
in <tt>lib/CodeGen/</tt>.</li>
<li><a href="#targetimpls">Implementations of the abstract target description
interfaces</a> for particular targets. These machine descriptions make
use of the components provided by LLVM, and can optionally provide custom
target-specific passes, to build complete code generators for a specific
target. Target descriptions live in <tt>lib/Target/</tt>.</li>
<li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is
completely target independent (it uses the <tt>TargetJITInfo</tt>
structure to interface for target-specific issues. The code for the
target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
</ol>
<p>Depending on which part of the code generator you are interested in working
on, different pieces of this will be useful to you. In any case, you should
be familiar with the <a href="#targetdesc">target description</a>
and <a href="#codegendesc">machine code representation</a> classes. If you
want to add a backend for a new target, you will need
to <a href="#targetimpls">implement the target description</a> classes for
your new target and understand the <a href="LangRef.html">LLVM code
representation</a>. If you are interested in implementing a
new <a href="#codegenalgs">code generation algorithm</a>, it should only
depend on the target-description and machine code representation classes,
ensuring that it is portable.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="required">Required components in the code generator</a>
</div>
<div class="doc_text">
<p>The two pieces of the LLVM code generator are the high-level interface to the
code generator and the set of reusable components that can be used to build
target-specific backends. The two most important interfaces
(<a href="#targetmachine"><tt>TargetMachine</tt></a>
and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
required to be defined for a backend to fit into the LLVM system, but the
others must be defined if the reusable code generator components are going to
be used.</p>
<p>This design has two important implications. The first is that LLVM can
support completely non-traditional code generation targets. For example, the
C backend does not require register allocation, instruction selection, or any
of the other standard components provided by the system. As such, it only
implements these two interfaces, and does its own thing. Another example of
a code generator like this is a (purely hypothetical) backend that converts
LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
<p>This design also implies that it is possible to design and implement
radically different code generators in the LLVM system that do not make use
of any of the built-in components. Doing so is not recommended at all, but
could be required for radically different targets that do not fit into the
LLVM machine description model: FPGAs for example.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="high-level-design">The high-level design of the code generator</a>
</div>
<div class="doc_text">
<p>The LLVM target-independent code generator is designed to support efficient
and quality code generation for standard register-based microprocessors.
Code generation in this model is divided into the following stages:</p>
<ol>
<li><b><a href="#instselect">Instruction Selection</a></b> — This phase
determines an efficient way to express the input LLVM code in the target
instruction set. This stage produces the initial code for the program in
the target instruction set, then makes use of virtual registers in SSA
form and physical registers that represent any required register
assignments due to target constraints or calling conventions. This step
turns the LLVM code into a DAG of target instructions.</li>
<li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> —
This phase takes the DAG of target instructions produced by the
instruction selection phase, determines an ordering of the instructions,
then emits the instructions
as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
Note that we describe this in the <a href="#instselect">instruction
selection section</a> because it operates on
a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
<li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> —
This optional stage consists of a series of machine-code optimizations
that operate on the SSA-form produced by the instruction selector.
Optimizations like modulo-scheduling or peephole optimization work
here.</li>
<li><b><a href="#regalloc">Register Allocation</a></b> — The target code
is transformed from an infinite virtual register file in SSA form to the
concrete register file used by the target. This phase introduces spill
code and eliminates all virtual register references from the program.</li>
<li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> — Once
the machine code has been generated for the function and the amount of
stack space required is known (used for LLVM alloca's and spill slots),
the prolog and epilog code for the function can be inserted and "abstract
stack location references" can be eliminated. This stage is responsible
for implementing optimizations like frame-pointer elimination and stack
packing.</li>
<li><b><a href="#latemco">Late Machine Code Optimizations</a></b> —
Optimizations that operate on "final" machine code can go here, such as
spill code scheduling and peephole optimizations.</li>
<li><b><a href="#codeemit">Code Emission</a></b> — The final stage
actually puts out the code for the current function, either in the target
assembler format or in machine code.</li>
</ol>
<p>The code generator is based on the assumption that the instruction selector
will use an optimal pattern matching selector to create high-quality
sequences of native instructions. Alternative code generator designs based
on pattern expansion and aggressive iterative peephole optimization are much
slower. This design permits efficient compilation (important for JIT
environments) and aggressive optimization (used when generating code offline)
by allowing components of varying levels of sophistication to be used for any
step of compilation.</p>
<p>In addition to these stages, target implementations can insert arbitrary
target-specific passes into the flow. For example, the X86 target uses a
special pass to handle the 80x87 floating point stack architecture. Other
targets with unusual requirements can be supported with custom passes as
needed.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="tablegen">Using TableGen for target description</a>
</div>
<div class="doc_text">
<p>The target description classes require a detailed description of the target
architecture. These target descriptions often have a large amount of common
information (e.g., an <tt>add</tt> instruction is almost identical to a
<tt>sub</tt> instruction). In order to allow the maximum amount of
commonality to be factored out, the LLVM code generator uses
the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
chunks of the target machine, which allows the use of domain-specific and
target-specific abstractions to reduce the amount of repetition.</p>
<p>As LLVM continues to be developed and refined, we plan to move more and more
of the target description to the <tt>.td</tt> form. Doing so gives us a
number of advantages. The most important is that it makes it easier to port
LLVM because it reduces the amount of C++ code that has to be written, and
the surface area of the code generator that needs to be understood before
someone can get something working. Second, it makes it easier to change
things. In particular, if tables and other things are all emitted
by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
update all of the targets to a new interface.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section">
<a name="targetdesc">Target description classes</a>
</div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM target description classes (located in the
<tt>include/llvm/Target</tt> directory) provide an abstract description of
the target machine independent of any particular client. These classes are
designed to capture the <i>abstract</i> properties of the target (such as the
instructions and registers it has), and do not incorporate any particular
pieces of code generation algorithms.</p>
<p>All of the target description classes (except the
<tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
subclassed by the concrete target implementation, and have virtual methods
implemented. To get to these implementations, the
<tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
that should be implemented by the target.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetmachine">The <tt>TargetMachine</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
access the target-specific implementations of the various target description
classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
<tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is
designed to be specialized by a concrete target implementation
(e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
methods. The only required target description class is
the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
generator components are to be used, the other interfaces should be
implemented as well.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetdata">The <tt>TargetData</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetData</tt> class is the only required target description class,
and it is the only class that is not extensible (you cannot derived a new
class from it). <tt>TargetData</tt> specifies information about how the
target lays out memory for structures, the alignment requirements for various
data types, the size of pointers in the target, and whether the target is
little-endian or big-endian.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetlowering">The <tt>TargetLowering</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
selectors primarily to describe how LLVM code should be lowered to
SelectionDAG operations. Among other things, this class indicates:</p>
<ul>
<li>an initial register class to use for various <tt>ValueType</tt>s,</li>
<li>which operations are natively supported by the target machine,</li>
<li>the return type of <tt>setcc</tt> operations,</li>
<li>the type to use for shift amounts, and</li>
<li>various high-level characteristics, like whether it is profitable to turn
division by a constant into a multiplication sequence</li>
</ul>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
of the target and any interactions between the registers.</p>
<p>Registers in the code generator are represented in the code generator by
unsigned integers. Physical registers (those that actually exist in the
target description) are unique small numbers, and virtual registers are
generally large. Note that register #0 is reserved as a flag value.</p>
<p>Each register in the processor description has an associated
<tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
register (used for assembly output and debugging dumps) and a set of aliases
(used to indicate whether one register overlaps with another).</p>
<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
class exposes a set of processor specific register classes (instances of the
<tt>TargetRegisterClass</tt> class). Each register class contains sets of
registers that have the same properties (for example, they are all 32-bit
integer registers). Each SSA virtual register created by the instruction
selector has an associated register class. When the register allocator runs,
it replaces virtual registers with a physical register in the set.</p>
<p>The target-specific implementations of these classes is auto-generated from
a <a href="TableGenFundamentals.html">TableGen</a> description of the
register file.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
instructions supported by the target. It is essentially an array of
<tt>TargetInstrDescriptor</tt> objects, each of which describes one
instruction the target supports. Descriptors define things like the mnemonic
for the opcode, the number of operands, the list of implicit register uses
and defs, whether the instruction has certain target-independent properties
(accesses memory, is commutable, etc), and holds any target-specific
flags.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
stack frame layout of the target. It holds the direction of stack growth, the
known stack alignment on entry to each function, and the offset to the local
area. The offset to the local area is the offset from the stack pointer on
function entry to the first location where function data (local variables,
spill locations) can be stored.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
specific chip set being targeted. A sub-target informs code generation of
which instructions are supported, instruction latencies and instruction
execution itinerary; i.e., which processing units are used, in what order,
and for how long.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
Just-In-Time code generator to perform target-specific activities, such as
emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it
should provide one of these objects through the <tt>getJITInfo</tt>
method.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section">
<a name="codegendesc">Machine code description classes</a>
</div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>At the high-level, LLVM code is translated to a machine specific
representation formed out of
<a href="#machinefunction"><tt>MachineFunction</tt></a>,
<a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
in <tt>include/llvm/CodeGen</tt>). This representation is completely target
agnostic, representing instructions in their most abstract form: an opcode
and a series of operands. This representation is designed to support both an
SSA representation for machine code, as well as a register allocated, non-SSA
form.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="machineinstr">The <tt>MachineInstr</tt> class</a>
</div>
<div class="doc_text">
<p>Target machine instructions are represented as instances of the
<tt>MachineInstr</tt> class. This class is an extremely abstract way of
representing machine instructions. In particular, it only keeps track of an
opcode number and a set of operands.</p>
<p>The opcode number is a simple unsigned integer that only has meaning to a
specific backend. All of the instructions for a target should be defined in
the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
auto-generated from this description. The <tt>MachineInstr</tt> class does
not have any information about how to interpret the instruction (i.e., what
the semantics of the instruction are); for that you must refer to the
<tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
<p>The operands of a machine instruction can be of several different types: a
register reference, a constant integer, a basic block reference, etc. In
addition, a machine operand should be marked as a def or a use of the value
(though only registers are allowed to be defs).</p>
<p>By convention, the LLVM code generator orders instruction operands so that
all register definitions come before the register uses, even on architectures
that are normally printed in other orders. For example, the SPARC add
instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
and stores the result into the "%i3" register. In the LLVM code generator,
the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
destination first.</p>
<p>Keeping destination (definition) operands at the beginning of the operand
list has several advantages. In particular, the debugging printer will print
the instruction like this:</p>
<div class="doc_code">
<pre>
%r3 = add %i1, %i2
</pre>
</div>
<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
instructions</a> whose only def is the first operand.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
</div>
<div class="doc_text">
<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The
<tt>BuildMI</tt> functions make it easy to build arbitrary machine
instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p>
<div class="doc_code">
<pre>
// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
// instruction. The '1' specifies how many operands will be added.
MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
// Create the same instr, but insert it at the end of a basic block.
MachineBasicBlock &MBB = ...
BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
// Create the same instr, but insert it before a specified iterator point.
MachineBasicBlock::iterator MBBI = ...
BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
// Create a 'cmp Reg, 0' instruction, no destination reg.
MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
// Create an 'sahf' instruction which takes no operands and stores nothing.
MI = BuildMI(X86::SAHF, 0);
// Create a self looping branch instruction.
BuildMI(MBB, X86::JNE, 1).addMBB(&MBB);
</pre>
</div>
<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
have to specify the number of operands that the machine instruction will
take. This allows for efficient memory allocation. You also need to specify
if operands default to be uses of values, not definitions. If you need to
add a definition operand (other than the optional destination register), you
must explicitly mark it as such:</p>
<div class="doc_code">
<pre>
MI.addReg(Reg, RegState::Define);
</pre>
</div>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="fixedregs">Fixed (preassigned) registers</a>
</div>
<div class="doc_text">
<p>One important issue that the code generator needs to be aware of is the
presence of fixed registers. In particular, there are often places in the
instruction stream where the register allocator <em>must</em> arrange for a
particular value to be in a particular register. This can occur due to
limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
calling conventions. In any case, the instruction selector should emit code
that copies a virtual register into or out of a physical register when
needed.</p>
<p>For example, consider this simple LLVM example:</p>
<div class="doc_code">
<pre>
define i32 @test(i32 %X, i32 %Y) {
%Z = udiv i32 %X, %Y
ret i32 %Z
}
</pre>
</div>
<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
get this):</p>
<div class="doc_code">
<pre>
;; Start of div
%EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX
%reg1027 = sar %reg1024, 31
%EDX = mov %reg1027 ;; Sign extend X into EDX
idiv %reg1025 ;; Divide by Y (in reg1025)
%reg1026 = mov %EAX ;; Read the result (Z) out of EAX
;; Start of ret
%EAX = mov %reg1026 ;; 32-bit return value goes in EAX
ret
</pre>
</div>
<p>By the end of code generation, the register allocator has coalesced the
registers and deleted the resultant identity moves producing the following
code:</p>
<div class="doc_code">
<pre>
;; X is in EAX, Y is in ECX
mov %EAX, %EDX
sar %EDX, 31
idiv %ECX
ret
</pre>
</div>
<p>This approach is extremely general (if it can handle the X86 architecture, it
can handle anything!) and allows all of the target specific knowledge about
the instruction stream to be isolated in the instruction selector. Note that
physical registers should have a short lifetime for good code generation, and
all physical registers are assumed dead on entry to and exit from basic
blocks (before register allocation). Thus, if you need a value to be live
across basic block boundaries, it <em>must</em> live in a virtual
register.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="ssa">Machine code in SSA form</a>
</div>
<div class="doc_text">
<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
maintained in SSA-form until register allocation happens. For the most part,
this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
become machine code PHI nodes, and virtual registers are only allowed to have
a single definition.</p>
<p>After register allocation, machine code is no longer in SSA-form because
there are no virtual registers left in the code.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
(<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly
corresponds to the LLVM code input to the instruction selector, but there can
be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
"<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
comes from.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="machinefunction">The <tt>MachineFunction</tt> class</a>
</div>
<div class="doc_text">
<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
(<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It
corresponds one-to-one with the LLVM function input to the instruction
selector. In addition to a list of basic blocks,
the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
<tt>MachineRegisterInfo</tt>. See
<tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section">
<a name="codegenalgs">Target-independent code generation algorithms</a>
</div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>This section documents the phases described in the
<a href="#high-level-design">high-level design of the code generator</a>.
It explains how they work and some of the rationale behind their design.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="instselect">Instruction Selection</a>
</div>
<div class="doc_text">
<p>Instruction Selection is the process of translating LLVM code presented to
the code generator into target-specific machine instructions. There are
several well-known ways to do this in the literature. LLVM uses a
SelectionDAG based instruction selector.</p>
<p>Portions of the DAG instruction selector are generated from the target
description (<tt>*.td</tt>) files. Our goal is for the entire instruction
selector to be generated from these <tt>.td</tt> files, though currently
there are still things that require custom C++ code.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_intro">Introduction to SelectionDAGs</a>
</div>
<div class="doc_text">
<p>The SelectionDAG provides an abstraction for code representation in a way
that is amenable to instruction selection using automatic techniques
(e.g. dynamic-programming based optimal pattern matching selectors). It is
also well-suited to other phases of code generation; in particular,
instruction scheduling (SelectionDAG's are very close to scheduling DAGs
post-selection). Additionally, the SelectionDAG provides a host
representation where a large variety of very-low-level (but
target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
performed; ones which require extensive information about the instructions
efficiently supported by the target.</p>
<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
<tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its
operation code (Opcode) that indicates what operation the node performs and
the operands to the operation. The various operation node types are
described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
file.</p>
<p>Although most operations define a single value, each node in the graph may
define multiple values. For example, a combined div/rem operation will
define both the dividend and the remainder. Many other situations require
multiple values as well. Each node also has some number of operands, which
are edges to the node defining the used value. Because nodes may define
multiple values, edges are represented by instances of the <tt>SDValue</tt>
class, which is a <tt><SDNode, unsigned></tt> pair, indicating the node
and result value being used, respectively. Each value produced by
an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
indicating what the type of the value is.</p>
<p>SelectionDAGs contain two different kinds of values: those that represent
data flow and those that represent control flow dependencies. Data values
are simple edges with an integer or floating point value type. Control edges
are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
These edges provide an ordering between nodes that have side effects (such as
loads, stores, calls, returns, etc). All nodes that have side effects should
take a token chain as input and produce a new one as output. By convention,
token chain inputs are always operand #0, and chain results are always the
last value produced by an operation.</p>
<p>A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is
always a marker node with an Opcode of <tt>ISD::EntryToken</tt>. The Root
node is the final side-effecting node in the token chain. For example, in a
single basic block function it would be the return node.</p>
<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
"illegal" DAG. A legal DAG for a target is one that only uses supported
operations and supported types. On a 32-bit PowerPC, for example, a DAG with
a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
uses a SREM or UREM operation. The
<a href="#selectinodag_legalize_types">legalize types</a> and
<a href="#selectiondag_legalize">legalize operations</a> phases are
responsible for turning an illegal DAG into a legal DAG.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
</div>
<div class="doc_text">
<p>SelectionDAG-based instruction selection consists of the following steps:</p>
<ol>
<li><a href="#selectiondag_build">Build initial DAG</a> — This stage
performs a simple translation from the input LLVM code to an illegal
SelectionDAG.</li>
<li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> — This
stage performs simple optimizations on the SelectionDAG to simplify it,
and recognize meta instructions (like rotates
and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
operations. This makes the resultant code more efficient and
the <a href="#selectiondag_select">select instructions from DAG</a> phase
(below) simpler.</li>
<li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
— This stage transforms SelectionDAG nodes to eliminate any types
that are unsupported on the target.</li>
<li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> — The
SelectionDAG optimizer is run to clean up redundancies exposed by type
legalization.</li>
<li><a href="#selectiondag_legalize">Legalize SelectionDAG Types</a> —
This stage transforms SelectionDAG nodes to eliminate any types that are
unsupported on the target.</li>
<li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> — The
SelectionDAG optimizer is run to eliminate inefficiencies introduced by
operation legalization.</li>
<li><a href="#selectiondag_select">Select instructions from DAG</a> —
Finally, the target instruction selector matches the DAG operations to
target instructions. This process translates the target-independent input
DAG into another DAG of target instructions.</li>
<li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
— The last phase assigns a linear order to the instructions in the
target-instruction DAG and emits them into the MachineFunction being
compiled. This step uses traditional prepass scheduling techniques.</li>
</ol>
<p>After all of these steps are complete, the SelectionDAG is destroyed and the
rest of the code generation passes are run.</p>
<p>One great way to visualize what is going on here is to take advantage of a
few LLC command line options. The following options pop up a window
displaying the SelectionDAG at specific times (if you only get errors printed
to the console while using this, you probably
<a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
to add support for it).</p>
<ul>
<li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
before the first optimization pass.</li>
<li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
<li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
optimization pass.</li>
<li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
<li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
</ul>
<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
This graph is based on the final SelectionDAG, with nodes that must be
scheduled together bundled into a single scheduling-unit node, and with
immediate operands and other nodes that aren't relevant for scheduling
omitted.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_build">Initial SelectionDAG Construction</a>
</div>
<div class="doc_text">
<p>The initial SelectionDAG is naïvely peephole expanded from the LLVM
input by the <tt>SelectionDAGLowering</tt> class in the
<tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file. The intent of
this pass is to expose as much low-level, target-specific details to the
SelectionDAG as possible. This pass is mostly hard-coded (e.g. an
LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
<tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
requires target-specific hooks to lower calls, returns, varargs, etc. For
these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
interface is used.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
</div>
<div class="doc_text">
<p>The Legalize phase is in charge of converting a DAG to only use the types
that are natively supported by the target.</p>
<p>There are two main ways of converting values of unsupported scalar types to
values of supported types: converting small types to larger types
("promoting"), and breaking up large integer types into smaller ones
("expanding"). For example, a target might require that all f32 values are
promoted to f64 and that all i1/i8/i16 values are promoted to i32. The same
target might require that all i64 values be expanded into pairs of i32
values. These changes can insert sign and zero extensions as needed to make
sure that the final code has the same behavior as the input.</p>
<p>There are two main ways of converting values of unsupported vector types to
value of supported types: splitting vector types, multiple times if
necessary, until a legal type is found, and extending vector types by adding
elements to the end to round them out to legal types ("widening"). If a
vector gets split all the way down to single-element parts with no supported
vector type being found, the elements are converted to scalars
("scalarizing").</p>
<p>A target implementation tells the legalizer which types are supported (and
which register class to use for them) by calling the
<tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
</div>
<div class="doc_text">
<p>The Legalize phase is in charge of converting a DAG to only use the
operations that are natively supported by the target.</p>
<p>Targets often have weird constraints, such as not supporting every operation
on every supported datatype (e.g. X86 does not support byte conditional moves
and PowerPC does not support sign-extending loads from a 16-bit memory
location). Legalize takes care of this by open-coding another sequence of
operations to emulate the operation ("expansion"), by promoting one type to a
larger type that supports the operation ("promotion"), or by using a
target-specific hook to implement the legalization ("custom").</p>
<p>A target implementation tells the legalizer which operations are not
supported (and which of the above three actions to take) by calling the
<tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
constructor.</p>
<p>Prior to the existence of the Legalize passes, we required that every target
<a href="#selectiondag_optimize">selector</a> supported and handled every
operator and type even if they are not natively supported. The introduction
of the Legalize phases allows all of the canonicalization patterns to be
shared across targets, and makes it very easy to optimize the canonicalized
code because it is still in the form of a DAG.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_optimize">SelectionDAG Optimization Phase: the DAG
Combiner</a>
</div>
<div class="doc_text">
<p>The SelectionDAG optimization phase is run multiple times for code
generation, immediately after the DAG is built and once after each
legalization. The first run of the pass allows the initial code to be
cleaned up (e.g. performing optimizations that depend on knowing that the
operators have restricted type inputs). Subsequent runs of the pass clean up
the messy code generated by the Legalize passes, which allows Legalize to be
very simple (it can focus on making code legal instead of focusing on
generating <em>good</em> and legal code).</p>
<p>One important class of optimizations performed is optimizing inserted sign
and zero extension instructions. We currently use ad-hoc techniques, but
could move to more rigorous techniques in the future. Here are some good
papers on the subject:</p>
<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
integer arithmetic</a>"<br>
Kevin Redwine and Norman Ramsey<br>
International Conference on Compiler Construction (CC) 2004</p>
<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
sign extension elimination</a>"<br>
Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_select">SelectionDAG Select Phase</a>
</div>
<div class="doc_text">
<p>The Select phase is the bulk of the target-specific code for instruction
selection. This phase takes a legal SelectionDAG as input, pattern matches
the instructions supported by the target to this DAG, and produces a new DAG
of target code. For example, consider the following LLVM fragment:</p>
<div class="doc_code">
<pre>
%t1 = add float %W, %X
%t2 = mul float %t1, %Y
%t3 = add float %t2, %Z
</pre>
</div>
<p>This LLVM code corresponds to a SelectionDAG that looks basically like
this:</p>
<div class="doc_code">
<pre>
(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
</pre>
</div>
<p>If a target supports floating point multiply-and-add (FMA) operations, one of
the adds can be merged with the multiply. On the PowerPC, for example, the
output of the instruction selector might look like this DAG:</p>
<div class="doc_code">
<pre>
(FMADDS (FADDS W, X), Y, Z)
</pre>
</div>
<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
first two operands and adds the third (as single-precision floating-point
numbers). The <tt>FADDS</tt> instruction is a simple binary single-precision
add instruction. To perform this pattern match, the PowerPC backend includes
the following instruction definitions:</p>
<div class="doc_code">
<pre>
def FMADDS : AForm_1<59, 29,
(ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
"fmadds $FRT, $FRA, $FRC, $FRB",
[<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
F4RC:$FRB))</b>]>;
def FADDS : AForm_2<59, 21,
(ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
"fadds $FRT, $FRA, $FRB",
[<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]>;
</pre>
</div>
<p>The portion of the instruction definition in bold indicates the pattern used
to match the instruction. The DAG operators
(like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
the <tt>lib/Target/TargetSelectionDAG.td</tt> file. "<tt>F4RC</tt>" is the
register class of the input and result values.</p>
<p>The TableGen DAG instruction selector generator reads the instruction
patterns in the <tt>.td</tt> file and automatically builds parts of the
pattern matching code for your target. It has the following strengths:</p>
<ul>
<li>At compiler-compiler time, it analyzes your instruction patterns and tells
you if your patterns make sense or not.</li>
<li>It can handle arbitrary constraints on operands for the pattern match. In
particular, it is straight-forward to say things like "match any immediate
that is a 13-bit sign-extended value". For examples, see the
<tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
backend.</li>
<li>It knows several important identities for the patterns defined. For
example, it knows that addition is commutative, so it allows the
<tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
to specially handle this case.</li>
<li>It has a full-featured type-inferencing system. In particular, you should
rarely have to explicitly tell the system what type parts of your patterns
are. In the <tt>FMADDS</tt> case above, we didn't have to tell
<tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
It was able to infer and propagate this knowledge from the fact that
<tt>F4RC</tt> has type 'f32'.</li>
<li>Targets can define their own (and rely on built-in) "pattern fragments".
Pattern fragments are chunks of reusable patterns that get inlined into
your patterns during compiler-compiler time. For example, the integer
"<tt>(not x)</tt>" operation is actually defined as a pattern fragment
that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
have a native '<tt>not</tt>' operation. Targets can define their own
short-hand fragments as they see fit. See the definition of
'<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
<li>In addition to instructions, targets can specify arbitrary patterns that
map to one or more instructions using the 'Pat' class. For example, the
PowerPC has no way to load an arbitrary integer immediate into a register
in one instruction. To tell tblgen how to do this, it defines:
<br>
<br>
<div class="doc_code">
<pre>
// Arbitrary immediate support. Implement in terms of LIS/ORI.
def : Pat<(i32 imm:$imm),
(ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
</pre>
</div>
<br>
If none of the single-instruction patterns for loading an immediate into a
register match, this will be used. This rule says "match an arbitrary i32
immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
the left 16 bits') instruction". To make this work, the
<tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
the input immediate (in this case, take the high or low 16-bits of the
immediate).</li>
<li>While the system does automate a lot, it still allows you to write custom
C++ code to match special cases if there is something that is hard to
express.</li>
</ul>
<p>While it has many strengths, the system currently has some limitations,
primarily because it is a work in progress and is not yet finished:</p>
<ul>
<li>Overall, there is no way to define or match SelectionDAG nodes that define
multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
etc). This is the biggest reason that you currently still <em>have
to</em> write custom C++ code for your instruction selector.</li>
<li>There is no great way to support matching complex addressing modes yet.
In the future, we will extend pattern fragments to allow them to define
multiple values (e.g. the four operands of the <a href="#x86_memory">X86
addressing mode</a>, which are currently matched with custom C++ code).
In addition, we'll extend fragments so that a fragment can match multiple
different patterns.</li>
<li>We don't automatically infer flags like isStore/isLoad yet.</li>
<li>We don't automatically generate the set of supported registers and
operations for the <a href="#selectiondag_legalize">Legalizer</a>
yet.</li>
<li>We don't have a way of tying in custom legalized nodes yet.</li>
</ul>
<p>Despite these limitations, the instruction selector generator is still quite
useful for most of the binary and logical operations in typical instruction
sets. If you run into any problems or can't figure out how to do something,
please let Chris know!</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
</div>
<div class="doc_text">
<p>The scheduling phase takes the DAG of target instructions from the selection
phase and assigns an order. The scheduler can pick an order depending on
various constraints of the machines (i.e. order for minimal register pressure
or try to cover instruction latencies). Once an order is established, the
DAG is converted to a list
of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
destroyed.</p>
<p>Note that this phase is logically separate from the instruction selection
phase, but is tied to it closely in the code because it operates on
SelectionDAGs.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="selectiondag_future">Future directions for the SelectionDAG</a>
</div>
<div class="doc_text">
<ol>
<li>Optional function-at-a-time selection.</li>
<li>Auto-generate entire selector from <tt>.td</tt> file.</li>
</ol>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="ssamco">SSA-based Machine Code Optimizations</a>
</div>
<div class="doc_text"><p>To Be Written</p></div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="liveintervals">Live Intervals</a>
</div>
<div class="doc_text">
<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
They are used by some <a href="#regalloc">register allocator</a> passes to
determine if two or more virtual registers which require the same physical
register are live at the same point in the program (i.e., they conflict).
When this situation occurs, one virtual register must be <i>spilled</i>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="livevariable_analysis">Live Variable Analysis</a>
</div>
<div class="doc_text">
<p>The first step in determining the live intervals of variables is to calculate
the set of registers that are immediately dead after the instruction (i.e.,
the instruction calculates the value, but it is never used) and the set of
registers that are used by the instruction, but are never used after the
instruction (i.e., they are killed). Live variable information is computed
for each <i>virtual</i> register and <i>register allocatable</i> physical
register in the function. This is done in a very efficient manner because it
uses SSA to sparsely compute lifetime information for virtual registers
(which are in SSA form) and only has to track physical registers within a
block. Before register allocation, LLVM can assume that physical registers
are only live within a single basic block. This allows it to do a single,
local analysis to resolve physical register lifetimes within each basic
block. If a physical register is not register allocatable (e.g., a stack
pointer or condition codes), it is not tracked.</p>
<p>Physical registers may be live in to or out of a function. Live in values are
typically arguments in registers. Live out values are typically return values
in registers. Live in values are marked as such, and are given a dummy
"defining" instruction during live intervals analysis. If the last basic
block of a function is a <tt>return</tt>, then it's marked as using all live
out values in the function.</p>
<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
the live variable information from a depth first traversal of the CFG of the
function won't guarantee that a virtual register used by the <tt>PHI</tt>
node is defined before it's used. When a <tt>PHI</tt> node is encountered,
only the definition is handled, because the uses will be handled in other
basic blocks.</p>
<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
assignment at the end of the current basic block and traverse the successor
basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
the <tt>PHI</tt> node's operands is coming from the current basic block, then
the variable is marked as <i>alive</i> within the current basic block and all
of its predecessor basic blocks, until the basic block with the defining
instruction is encountered.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="liveintervals_analysis">Live Intervals Analysis</a>
</div>
<div class="doc_text">
<p>We now have the information available to perform the live intervals analysis
and build the live intervals themselves. We start off by numbering the basic
blocks and machine instructions. We then handle the "live-in" values. These
are in physical registers, so the physical register is assumed to be killed
by the end of the basic block. Live intervals for virtual registers are
computed for some ordering of the machine instructions <tt>[1, N]</tt>. A
live interval is an interval <tt>[i, j)</tt>, where <tt>1 <= i <= j
< N</tt>, for which a variable is live.</p>
<p><i><b>More to come...</b></i></p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="regalloc">Register Allocation</a>
</div>
<div class="doc_text">
<p>The <i>Register Allocation problem</i> consists in mapping a program
<i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
number of physical registers. Each target architecture has a different number
of physical registers. If the number of physical registers is not enough to
accommodate all the virtual registers, some of them will have to be mapped
into memory. These virtuals are called <i>spilled virtuals</i>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="regAlloc_represent">How registers are represented in LLVM</a>
</div>
<div class="doc_text">
<p>In LLVM, physical registers are denoted by integer numbers that normally
range from 1 to 1023. To see how this numbering is defined for a particular
architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
architecture. For instance, by
inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
<tt>MM0</tt> is mapped to 48.</p>
<p>Some architectures contain registers that share the same physical location. A
notable example is the X86 platform. For instance, in the X86 architecture,
the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
particular architecture, you can check which registers are aliased by
inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
<tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
all the physical registers aliased to the register <tt>p_reg</tt>.</p>
<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
Elements in the same register class are functionally equivalent, and can be
interchangeably used. Each virtual register can only be mapped to physical
registers of a particular class. For instance, in the X86 architecture, some
virtuals can only be allocated to 8 bit registers. A register class is
described by <tt>TargetRegisterClass</tt> objects. To discover if a virtual
register is compatible with a given physical, this code can be used:</p>
<div class="doc_code">
<pre>
bool RegMapping_Fer::compatible_class(MachineFunction &mf,
unsigned v_reg,
unsigned p_reg) {
assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &&
"Target register must be physical");
const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
return trc->contains(p_reg);
}
</pre>
</div>
<p>Sometimes, mostly for debugging purposes, it is useful to change the number
of physical registers available in the target architecture. This must be done
statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
for <tt>RegisterClass</tt>, the last parameter of which is a list of
registers. Just commenting some out is one simple way to avoid them being
used. A more polite way is to explicitly exclude some registers from
the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
</p>
<p>Virtual registers are also denoted by integer numbers. Contrary to physical
registers, different virtual registers never share the same number. The
smallest virtual register is normally assigned the number 1024. This may
change, so, in order to know which is the first virtual register, you should
access <tt>TargetRegisterInfo::FirstVirtualRegister</tt>. Any register whose
number is greater than or equal
to <tt>TargetRegisterInfo::FirstVirtualRegister</tt> is considered a virtual
register. Whereas physical registers are statically defined in
a <tt>TargetRegisterInfo.td</tt> file and cannot be created by the
application developer, that is not the case with virtual registers. In order
to create new virtual registers, use the
method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
will return a virtual register with the highest code.</p>
<p>Before register allocation, the operands of an instruction are mostly virtual
registers, although physical registers may also be used. In order to check if
a given machine operand is a register, use the boolean
function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
defines the registers 1024, and uses registers 1025 and 1026. Given a
register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
register is being used by the instruction. The
method <tt>MachineOperand::isDef()</tt> informs if that registers is being
defined.</p>
<p>We will call physical registers present in the LLVM bitcode before register
allocation <i>pre-colored registers</i>. Pre-colored registers are used in
many different situations, for instance, to pass parameters of functions
calls, and to store results of particular instructions. There are two types
of pre-colored registers: the ones <i>implicitly</i> defined, and
those <i>explicitly</i> defined. Explicitly defined registers are normal
operands, and can be accessed
with <tt>MachineInstr::getOperand(int)::getReg()</tt>. In order to check
which registers are implicitly defined by an instruction, use
the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
where <tt>opcode</tt> is the opcode of the target instruction. One important
difference between explicit and implicit physical registers is that the
latter are defined statically for each instruction, whereas the former may
vary depending on the program being compiled. For example, an instruction
that represents a function call will always implicitly define or use the same
set of physical registers. To read the registers implicitly used by an
instruction,
use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
registers impose constraints on any register allocation algorithm. The
register allocator must make sure that none of them is been overwritten by
the values of virtual registers while still alive.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
</div>
<div class="doc_text">
<p>There are two ways to map virtual registers to physical registers (or to
memory slots). The first way, that we will call <i>direct mapping</i>, is
based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
and stores sending and getting values to and from memory.</p>
<p>The direct mapping provides more flexibility to the developer of the register
allocator; however, it is more error prone, and demands more implementation
work. Basically, the programmer will have to specify where load and store
instructions should be inserted in the target function being compiled in
order to get and store values in memory. To assign a physical register to a
virtual register present in a given operand,
use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
use <tt>TargetRegisterInfo::storeRegToStackSlot(...)</tt>, and to insert a
load instruction, use <tt>TargetRegisterInfo::loadRegFromStackSlot</tt>.</p>
<p>The indirect mapping shields the application developer from the complexities
of inserting load and store instructions. In order to map a virtual register
to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>. In
order to map a certain virtual register to memory,
use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
the stack slot where <tt>vreg</tt>'s value will be located. If it is
necessary to map another virtual register to the same stack slot,
use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
important point to consider when using the indirect mapping, is that even if
a virtual register is mapped to memory, it still needs to be mapped to a
physical register. This physical register is the location where the virtual
register is supposed to be found before being stored or after being
reloaded.</p>
<p>If the indirect strategy is used, after all the virtual registers have been
mapped to physical registers or stack slots, it is necessary to use a spiller
object to place load and store instructions in the code. Every virtual that
has been mapped to a stack slot will be stored to memory after been defined
and will be loaded before being used. The implementation of the spiller tries
to recycle load/store instructions, avoiding unnecessary instructions. For an
example of how to invoke the spiller,
see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="regAlloc_twoAddr">Handling two address instructions</a>
</div>
<div class="doc_text">
<p>With very rare exceptions (e.g., function calls), the LLVM machine code
instructions are three address instructions. That is, each instruction is
expected to define at most one register, and to use at most two registers.
However, some architectures use two address instructions. In this case, the
defined register is also one of the used register. For instance, an
instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
to <tt>%EAX = %EAX + %EBX</tt>.</p>
<p>In order to produce correct code, LLVM must convert three address
instructions that represent two address instructions into true two address
instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
this specific purpose. It must be run before register allocation takes
place. After its execution, the resulting code may no longer be in SSA
form. This happens, for instance, in situations where an instruction such
as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
<div class="doc_code">
<pre>
%a = MOVE %b
%a = ADD %a %c
</pre>
</div>
<p>Notice that, internally, the second instruction is represented as
<tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
used and defined by the instruction.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
</div>
<div class="doc_text">
<p>An important transformation that happens during register allocation is called
the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
that are performed on the control flow graph of programs. However,
traditional instruction sets do not implement PHI instructions. Thus, in
order to generate executable code, compilers must replace PHI instructions
with other instructions that preserve their semantics.</p>
<p>There are many ways in which PHI instructions can safely be removed from the
target code. The most traditional PHI deconstruction algorithm replaces PHI
instructions with copy instructions. That is the strategy adopted by
LLVM. The SSA deconstruction algorithm is implemented
in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
identifier <tt>PHIEliminationID</tt> must be marked as required in the code
of the register allocator.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="regAlloc_fold">Instruction folding</a>
</div>
<div class="doc_text">
<p><i>Instruction folding</i> is an optimization performed during register
allocation that removes unnecessary copy instructions. For instance, a
sequence of instructions such as:</p>
<div class="doc_code">
<pre>
%EBX = LOAD %mem_address
%EAX = COPY %EBX
</pre>
</div>
<p>can be safely substituted by the single instruction:</p>
<div class="doc_code">
<pre>
%EAX = LOAD %mem_address
</pre>
</div>
<p>Instructions can be folded with
the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
taken when folding instructions; a folded instruction can be quite different
from the original
instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
use.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="regAlloc_builtIn">Built in register allocators</a>
</div>
<div class="doc_text">
<p>The LLVM infrastructure provides the application developer with three
different register allocators:</p>
<ul>
<li><i>Simple</i> — This is a very simple implementation that does not
keep values in registers across instructions. This register allocator
immediately spills every value right after it is computed, and reloads all
used operands from memory to temporary registers before each
instruction.</li>
<li><i>Local</i> — This register allocator is an improvement on the
<i>Simple</i> implementation. It allocates registers on a basic block
level, attempting to keep values in registers and reusing registers as
appropriate.</li>
<li><i>Linear Scan</i> — <i>The default allocator</i>. This is the
well-know linear scan register allocator. Whereas the
<i>Simple</i> and <i>Local</i> algorithms use a direct mapping
implementation technique, the <i>Linear Scan</i> implementation
uses a spiller in order to place load and stores.</li>
</ul>
<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
command line option <tt>-regalloc=...</tt>:</p>
<div class="doc_code">
<pre>
$ llc -f -regalloc=simple file.bc -o sp.s;
$ llc -f -regalloc=local file.bc -o lc.s;
$ llc -f -regalloc=linearscan file.bc -o ln.s;
</pre>
</div>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="proepicode">Prolog/Epilog Code Insertion</a>
</div>
<div class="doc_text"><p>To Be Written</p></div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="latemco">Late Machine Code Optimizations</a>
</div>
<div class="doc_text"><p>To Be Written</p></div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="codeemit">Code Emission</a>
</div>
<div class="doc_text"><p>To Be Written</p></div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="codeemit_asm">Generating Assembly Code</a>
</div>
<div class="doc_text"><p>To Be Written</p></div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="codeemit_bin">Generating Binary Machine Code</a>
</div>
<div class="doc_text">
<p>For the JIT or <tt>.o</tt> file writer</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section">
<a name="targetimpls">Target-specific Implementation Notes</a>
</div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>This section of the document explains features or design decisions that are
specific to the code generator for a particular target.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="tailcallopt">Tail call optimization</a>
</div>
<div class="doc_text">
<p>Tail call optimization, callee reusing the stack of the caller, is currently
supported on x86/x86-64 and PowerPC. It is performed if:</p>
<ul>
<li>Caller and callee have the calling convention <tt>fastcc</tt>.</li>
<li>The call is a tail call - in tail position (ret immediately follows call
and ret uses value of call or is void).</li>
<li>Option <tt>-tailcallopt</tt> is enabled.</li>
<li>Platform specific constraints are met.</li>
</ul>
<p>x86/x86-64 constraints:</p>
<ul>
<li>No variable argument lists are used.</li>
<li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
= hidden or protected) are supported.</li>
</ul>
<p>PowerPC constraints:</p>
<ul>
<li>No variable argument lists are used.</li>
<li>No byval parameters are used.</li>
<li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
</ul>
<p>Example:</p>
<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
<div class="doc_code">
<pre>
declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
%l1 = add i32 %in1, %in2
%tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
ret i32 %tmp
}
</pre>
</div>
<p>Implications of <tt>-tailcallopt</tt>:</p>
<p>To support tail call optimization in situations where the callee has more
arguments than the caller a 'callee pops arguments' convention is used. This
currently causes each <tt>fastcc</tt> call that is not tail call optimized
(because one or more of above constraints are not met) to be followed by a
readjustment of the stack. So performance might be worse in such cases.</p>
<p>On x86 and x86-64 one register is reserved for indirect tail calls (e.g via a
function pointer). So there is one less register for integer argument
passing. For x86 this means 2 registers (if <tt>inreg</tt> parameter
attribute is used) and for x86-64 this means 5 register are used.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="x86">The X86 backend</a>
</div>
<div class="doc_text">
<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory. This
code generator is capable of targeting a variety of x86-32 and x86-64
processors, and includes support for ISA extensions such as MMX and SSE.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="x86_tt">X86 Target Triples supported</a>
</div>
<div class="doc_text">
<p>The following are the known target triples that are supported by the X86
backend. This is not an exhaustive list, and it would be useful to add those
that people test.</p>
<ul>
<li><b>i686-pc-linux-gnu</b> — Linux</li>
<li><b>i386-unknown-freebsd5.3</b> — FreeBSD 5.3</li>
<li><b>i686-pc-cygwin</b> — Cygwin on Win32</li>
<li><b>i686-pc-mingw32</b> — MingW on Win32</li>
<li><b>i386-pc-mingw32msvc</b> — MingW crosscompiler on Linux</li>
<li><b>i686-apple-darwin*</b> — Apple Darwin on X86</li>
<li><b>x86_64-unknown-linux-gnu</b> — Linux</li>
</ul>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="x86_cc">X86 Calling Conventions supported</a>
</div>
<div class="doc_text">
<p>The following target-specific calling conventions are known to backend:</p>
<ul>
<li><b>x86_StdCall</b> — stdcall calling convention seen on Microsoft
Windows platform (CC ID = 64).</li>
<li><b>x86_FastCall</b> — fastcall calling convention seen on Microsoft
Windows platform (CC ID = 65).</li>
</ul>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
</div>
<div class="doc_text">
<p>The x86 has a very flexible way of accessing memory. It is capable of
forming memory addresses of the following expression directly in integer
instructions (which use ModR/M addressing):</p>
<div class="doc_code">
<pre>
Base + [1,2,4,8] * IndexReg + Disp32
</pre>
</div>
<p>In order to represent this, LLVM tracks no less than 4 operands for each
memory operand of this form. This means that the "load" form of
'<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
<div class="doc_code">
<pre>
Index: 0 | 1 2 3 4
Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement
OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm
</pre>
</div>
<p>Stores, and all other instructions, treat the four memory operands in the
same way and in the same order.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="x86_memory">X86 address spaces supported</a>
</div>
<div class="doc_text">
<p>x86 has an experimental feature which provides
the ability to perform loads and stores to different address spaces
via the x86 segment registers. A segment override prefix byte on an
instruction causes the instruction's memory access to go to the specified
segment. LLVM address space 0 is the default address space, which includes
the stack, and any unqualified memory accesses in a program. Address spaces
1-255 are currently reserved for user-defined code. The GS-segment is
represented by address space 256, while the FS-segment is represented by
address space 257. Other x86 segments have yet to be allocated address space
numbers.</p>
<p>While these address spaces may seem similar to TLS via the
<tt>thread_local</tt> keyword, and often use the same underlying hardware,
there are some fundamental differences.</p>
<p>The <tt>thread_local</tt> keyword applies to global variables and
specifies that they are to be allocated in thread-local memory. There are
no type qualifiers involved, and these variables can be pointed to with
normal pointers and accessed with normal loads and stores.
The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
level (though LLVM doesn't yet have implementations of it for some
configurations).<p>
<p>Special address spaces, in contrast, apply to static types. Every
load and store has a particular address space in its address operand type,
and this is what determines which address space is accessed.
LLVM ignores these special address space qualifiers on global variables,
and does not provide a way to directly allocate storage in them.
At the LLVM IR level, the behavior of these special address spaces depends
in part on the underlying OS or runtime environment, and they are specific
to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
<p>Some operating systems and runtime environments use (or may in the future
use) the FS/GS-segment registers for various low-level purposes, so care
should be taken when considering them.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="x86_names">Instruction naming</a>
</div>
<div class="doc_text">
<p>An instruction name consists of the base name, a default operand size, and a
a character per operand with an optional special size. For example:</p>
<div class="doc_code">
<pre>
ADD8rr -> add, 8-bit register, 8-bit register
IMUL16rmi -> imul, 16-bit register, 16-bit memory, 16-bit immediate
IMUL16rmi8 -> imul, 16-bit register, 16-bit memory, 8-bit immediate
MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory
</pre>
</div>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="ppc">The PowerPC backend</a>
</div>
<div class="doc_text">
<p>The PowerPC code generator lives in the lib/Target/PowerPC directory. The
code generation is retargetable to several variations or <i>subtargets</i> of
the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="ppc_abi">LLVM PowerPC ABI</a>
</div>
<div class="doc_text">
<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
relative (PIC) or static addressing for accessing global values, so no TOC
(r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
of a stack frame. LLVM takes advantage of having no TOC to provide space to
save the frame pointer in the PowerPC linkage area of the caller frame.
Other details of PowerPC ABI can be found at <a href=
"http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
>PowerPC ABI.</a> Note: This link describes the 32 bit ABI. The 64 bit ABI
is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
for system use.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="ppc_frame">Frame Layout</a>
</div>
<div class="doc_text">
<p>The size of a PowerPC frame is usually fixed for the duration of a
function's invocation. Since the frame is fixed size, all references
into the frame can be accessed via fixed offsets from the stack pointer. The
exception to this is when dynamic alloca or variable sized arrays are
present, then a base pointer (r31) is used as a proxy for the stack pointer
and stack pointer is free to grow or shrink. A base pointer is also used if
llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
always aligned to 16 bytes, so that space allocated for altivec vectors will
be properly aligned.</p>
<p>An invocation frame is laid out as follows (low memory at top);</p>
<table class="layout">
<tr>
<td>Linkage<br><br></td>
</tr>
<tr>
<td>Parameter area<br><br></td>
</tr>
<tr>
<td>Dynamic area<br><br></td>
</tr>
<tr>
<td>Locals area<br><br></td>
</tr>
<tr>
<td>Saved registers area<br><br></td>
</tr>
<tr style="border-style: none hidden none hidden;">
<td><br></td>
</tr>
<tr>
<td>Previous Frame<br><br></td>
</tr>
</table>
<p>The <i>linkage</i> area is used by a callee to save special registers prior
to allocating its own frame. Only three entries are relevant to LLVM. The
first entry is the previous stack pointer (sp), aka link. This allows
probing tools like gdb or exception handlers to quickly scan the frames in
the stack. A function epilog can also use the link to pop the frame from the
stack. The third entry in the linkage area is used to save the return
address from the lr register. Finally, as mentioned above, the last entry is
used to save the previous frame pointer (r31.) The entries in the linkage
area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
mode and 48 bytes in 64 bit mode.</p>
<p>32 bit linkage area</p>
<table class="layout">
<tr>
<td>0</td>
<td>Saved SP (r1)</td>
</tr>
<tr>
<td>4</td>
<td>Saved CR</td>
</tr>
<tr>
<td>8</td>
<td>Saved LR</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
</tr>
<tr>
<td>20</td>
<td>Saved FP (r31)</td>
</tr>
</table>
<p>64 bit linkage area</p>
<table class="layout">
<tr>
<td>0</td>
<td>Saved SP (r1)</td>
</tr>
<tr>
<td>8</td>
<td>Saved CR</td>
</tr>
<tr>
<td>16</td>
<td>Saved LR</td>
</tr>
<tr>
<td>24</td>
<td>Reserved</td>
</tr>
<tr>
<td>32</td>
<td>Reserved</td>
</tr>
<tr>
<td>40</td>
<td>Saved FP (r31)</td>
</tr>
</table>
<p>The <i>parameter area</i> is used to store arguments being passed to a callee
function. Following the PowerPC ABI, the first few arguments are actually
passed in registers, with the space in the parameter area unused. However,
if there are not enough registers or the callee is a thunk or vararg
function, these register arguments can be spilled into the parameter area.
Thus, the parameter area must be large enough to store all the parameters for
the largest call sequence made by the caller. The size must also be
minimally large enough to spill registers r3-r10. This allows callees blind
to the call signature, such as thunks and vararg functions, enough space to
cache the argument registers. Therefore, the parameter area is minimally 32
bytes (64 bytes in 64 bit mode.) Also note that since the parameter area is
a fixed offset from the top of the frame, that a callee can access its spilt
arguments using fixed offsets from the stack pointer (or base pointer.)</p>
<p>Combining the information about the linkage, parameter areas and alignment. A
stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
mode.</p>
<p>The <i>dynamic area</i> starts out as size zero. If a function uses dynamic
alloca then space is added to the stack, the linkage and parameter areas are
shifted to top of stack, and the new space is available immediately below the
linkage and parameter areas. The cost of shifting the linkage and parameter
areas is minor since only the link value needs to be copied. The link value
can be easily fetched by adding the original frame size to the base pointer.
Note that allocations in the dynamic space need to observe 16 byte
alignment.</p>
<p>The <i>locals area</i> is where the llvm compiler reserves space for local
variables.</p>
<p>The <i>saved registers area</i> is where the llvm compiler spills callee
saved registers on entry to the callee.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="ppc_prolog">Prolog/Epilog</a>
</div>
<div class="doc_text">
<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
the following exceptions. Callee saved registers are spilled after the frame
is created. This allows the llvm epilog/prolog support to be common with
other targets. The base pointer callee saved register r31 is saved in the
TOC slot of linkage area. This simplifies allocation of space for the base
pointer and makes it convenient to locate programatically and during
debugging.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="ppc_dynamic">Dynamic Allocation</a>
</div>
<div class="doc_text">
<p><i>TODO - More to come.</i></p>
</div>
<!-- *********************************************************************** -->
<hr>
<address>
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
<a href="http://validator.w3.org/check/referer"><img
src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date: 2009-07-23 17:30:09 -0700 (Thu, 23 Jul 2009) $
</address>
</body>
</html>
|