File: doc_nistgauss.py

package info (click to toggle)
lmfit-py 0.8.0%2Bdfsg.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,776 kB
  • ctags: 1,203
  • sloc: python: 7,041; makefile: 102; sh: 43
file content (43 lines) | stat: -rw-r--r-- 935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python
#<examples/doc_nistgauss.py>
import numpy as np
from lmfit.models import GaussianModel, ExponentialModel
import sys
import matplotlib.pyplot as plt

dat = np.loadtxt('NIST_Gauss2.dat')
x = dat[:, 1]
y = dat[:, 0]

exp_mod = ExponentialModel(prefix='exp_')
pars = exp_mod.guess(y, x=x)

gauss1  = GaussianModel(prefix='g1_')
pars.update( gauss1.make_params())

pars['g1_center'].set(105, min=75, max=125)
pars['g1_sigma'].set(15, min=3)
pars['g1_amplitude'].set(2000, min=10)

gauss2  = GaussianModel(prefix='g2_')

pars.update(gauss2.make_params())

pars['g2_center'].set(155, min=125, max=175)
pars['g2_sigma'].set(15, min=3)
pars['g2_amplitude'].set(2000, min=10)

mod = gauss1 + gauss2 + exp_mod


init = mod.eval(pars, x=x)
plt.plot(x, y)
plt.plot(x, init, 'k--')

out = mod.fit(y, pars, x=x)

print(out.fit_report(min_correl=0.5))

plt.plot(x, out.best_fit, 'r-')
plt.show()
#<end examples/doc_nistgauss.py>