1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
#!/usr/bin/env python
#<examples/doc_stepmodel.py>
import numpy as np
from lmfit.models import StepModel, LinearModel
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 201)
y = np.ones_like(x)
y[:48] = 0.0
y[48:77] = np.arange(77-48)/(77.0-48)
y = 110.2 * (y + 9e-3*np.random.randn(len(x))) + 12.0 + 2.22*x
step_mod = StepModel(form='erf', prefix='step_')
line_mod = LinearModel(prefix='line_')
pars = line_mod.make_params(intercept=y.min(), slope=0)
pars += step_mod.guess(y, x=x, center=2.5)
mod = step_mod + line_mod
out = mod.fit(y, pars, x=x)
print(out.fit_report())
plt.plot(x, y)
plt.plot(x, out.init_fit, 'k--')
plt.plot(x, out.best_fit, 'r-')
plt.show()
#<end examples/doc_stepmodel.py>
|