File: example_covar.py

package info (click to toggle)
lmfit-py 0.8.0%2Bdfsg.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,776 kB
  • ctags: 1,203
  • sloc: python: 7,041; makefile: 102; sh: 43
file content (93 lines) | stat: -rw-r--r-- 2,312 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import sys
from numpy import linspace, zeros, sin, exp, random, sqrt, pi, sign
from scipy.optimize import leastsq

from lmfit import Parameters, Minimizer, report_fit
from lmfit.lineshapes import gaussian

try:
    import pylab
    HASPYLAB = True
except ImportError:
    HASPYLAB = False

HASPYLAB = False

def residual(pars, x, sigma=None, data=None):
    yg = gaussian(x, pars['amp_g'].value,
                  pars['cen_g'].value, pars['wid_g'].value)

    slope = pars['line_slope'].value
    offset = pars['line_off'].value
    model = yg + offset + x * slope
    if data is None:
        return model
    if sigma is  None:
        return (model - data)

    return (model - data)/sigma


n = 201
xmin = 0.
xmax = 20.0
x = linspace(xmin, xmax, n)

p_true = Parameters()
p_true.add('amp_g', value=21.0)
p_true.add('cen_g', value=8.1)
p_true.add('wid_g', value=1.6)
p_true.add('line_off', value=-1.023)
p_true.add('line_slope', value=0.62)

data = (gaussian(x, p_true['amp_g'].value, p_true['cen_g'].value,
                 p_true['wid_g'].value) +
        random.normal(scale=0.23,  size=n) +
        x*p_true['line_slope'].value + p_true['line_off'].value )

if HASPYLAB:
    pylab.plot(x, data, 'r+')

p_fit = Parameters()
p_fit.add('amp_g', value=10.0)
p_fit.add('cen_g', value=9)
p_fit.add('wid_g', value=1)
p_fit.add('line_slope', value=0.0)
p_fit.add('line_off', value=0.0)

myfit = Minimizer(residual, p_fit,
                  fcn_args=(x,),
                  fcn_kws={'sigma':0.2, 'data':data})

myfit.prepare_fit()
#
for scale_covar in (True, False):
    myfit.scale_covar = scale_covar
    print '  ====  scale_covar = ', myfit.scale_covar, ' ==='
    for sigma in (0.1, 0.2, 0.23, 0.5):
        myfit.userkws['sigma'] = sigma

        p_fit['amp_g'].value  = 10
        p_fit['cen_g'].value  =  9
        p_fit['wid_g'].value  =  1
        p_fit['line_slope'].value =0.0
        p_fit['line_off'].value   =0.0

        myfit.leastsq()
        print '  sigma          = ', sigma
        print '  chisqr         = ', myfit.chisqr
        print '  reduced_chisqr = ', myfit.redchi

        report_fit(p_fit, modelpars=p_true, show_correl=False)
        print '  =============================='


# if HASPYLAB:
#     fit = residual(p_fit, x)
#     pylab.plot(x, fit, 'k-')
#     pylab.show()
#