File: fit_NIST_leastsq.py

package info (click to toggle)
lmfit-py 0.8.0%2Bdfsg.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,776 kB
  • ctags: 1,203
  • sloc: python: 7,041; makefile: 102; sh: 43
file content (148 lines) | stat: -rw-r--r-- 4,451 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# from __future__ import print_function
import sys
import math

try:
    import matplotlib
    matplotlib.use('WXAgg')
    import pylab
    HASPYLAB = True
except ImportError:
    HASPYLAB = False

from scipy.optimize import leastsq, curve_fit

from NISTModels import Models, ReadNistData


def ndig(a, b):
    return int(0.5-math.log10(abs(abs(a)-abs(b))/abs(b)))

def Compare_NIST_Results(DataSet, params, NISTdata):
    print(' ======================================')
    print(' %s: ' % DataSet)
    print(' | Parameter Name |  Value Found   |  Certified Value | # Matching Digits |')
    print( ' |----------------+----------------+------------------+-------------------|')

    val_dig_min = 1000
    err_dig_min = 1000
    for i in range(NISTdata['nparams']):
        parname = 'b%i' % (i+1)
        par = params[parname]
        thisval = par.value
        certval = NISTdata['cert_values'][i]

        thiserr = par.stderr
        certerr = NISTdata['cert_stderr'][i]
        vdig   = ndig(thisval, certval)
        edig   = ndig(thiserr, certerr)

        pname = (parname + ' value ' + ' '*14)[:14]
        ename = (parname + ' stderr' + ' '*14)[:14]
        print(' | %s | % -.7e | % -.7e   | %2i                |' % (pname, thisval, certval, vdig))
        print(' | %s | % -.7e | % -.7e   | %2i                |' % (ename, thiserr, certerr, edig))

        val_dig_min = min(val_dig_min, vdig)
        err_dig_min = min(err_dig_min, edig)

    print(' |----------------+----------------+------------------+-------------------|')
    sumsq = NISTdata['sum_squares']
    chi2 = 'xx' # myfit.chisqr
    print(' | Sum of Squares | %.7e  | %.7e    |  %2i               |' % (chi2, sumsq,
                                                                          ndig(chi2, sumsq)))
    print(' |----------------+----------------+------------------+-------------------|')

    print(' Worst agreement: %i digits for value, %i digits for error ' % (val_dig_min, err_dig_min))

    return val_dig_min

def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    params = []
    param_names = []
    for i in range(npar):
        pname = 'b%i' % (i+1)
        cval  = NISTdata['cert_values'][i]
        cerr  = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        params.append(pval1)
        param_names.append(pname)


        #     myfit = Minimizer(resid, params, fcn_args=(x,), fcn_kws={'y':y},
        #                       scale_covar=True)
        #
    print 'lsout ', params
    lsout = leastsq(resid, params, args=(x, y), full_output=True)

    print 'lsout ', lsout
    print params   , len(x), len(y)

    digs = Compare_NIST_Results(DataSet,  params, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(params, x, )
        pylab.plot(x, y, 'r+-')
        pylab.plot(x, fit, 'ko--')
        pylab.show()

    return digs > 2

msg1 = """
----- NIST StRD Models -----
Select one of the Models listed below:
and a starting point of 'start1' or 'start2'
"""

msg2 = """
That is, use
    python fit_NIST.py Bennet5 start1
or go through all models and starting points with:
    python fit_NIST.py all
"""

if __name__  == '__main__':
    dset = 'Bennett5'
    start = 'start2'
    if len(sys.argv) < 2:
        print(msg1)
        out = ''
        for d in sorted(Models.keys()):
            out = out + ' %s ' % d
            if len(out) > 55:
                print( out)
                out = ''
        print(out)
        print(msg2)

        sys.exit()

    if len(sys.argv) > 1:
        dset = sys.argv[1]
    if len(sys.argv) > 2:
        start = sys.argv[2]
    if dset.lower() == 'all':
        tpass = 0
        tfail = 0
        failures = []
        dsets = sorted(Models.keys())
        for dset in dsets:
            for start in ('start1', 'start2'):
                if NIST_Test(dset, start=start, plot=False):
                    tpass += 1
                else:
                    tfail += 1
                    failures.append("   %s (starting at '%s')" % (dset, start))

        print('--------------------------------------')
        print(' Final Results: %i pass, %i fail.' % (tpass, tfail))
        print(' Tests Failed for:\n %s' % '\n '.join(failures))
        print('--------------------------------------')
    else:
        NIST_Test(dset, start=start, plot=True)