1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
from __future__ import print_function
import sys
import math
from optparse import OptionParser
try:
import matplotlib
matplotlib.use('WXAgg')
import pylab
HASPYLAB = True
except ImportError:
HASPYLAB = False
if 'nose' in arg:
HASPYLAB = False
from lmfit import Parameters, minimize
from NISTModels import Models, ReadNistData
def ndig(a, b):
"precision for NIST values"
return round(-math.log10((abs(abs(a)-abs(b)) +1.e-15)/ abs(b)))
def Compare_NIST_Results(DataSet, myfit, params, NISTdata):
print(' ======================================')
print(' %s: ' % DataSet)
print(' | Parameter Name | Value Found | Certified Value | # Matching Digits |')
print(' |----------------+----------------+------------------+-------------------|')
val_dig_min = 200
err_dig_min = 200
for i in range(NISTdata['nparams']):
parname = 'b%i' % (i+1)
par = params[parname]
thisval = par.value
certval = NISTdata['cert_values'][i]
vdig = ndig(thisval, certval)
pname = (parname + ' value ' + ' '*14)[:14]
print(' | %s | % -.7e | % -.7e | %2i |' % (pname, thisval, certval, vdig))
val_dig_min = min(val_dig_min, vdig)
thiserr = par.stderr
certerr = NISTdata['cert_stderr'][i]
if thiserr is not None and myfit.errorbars:
edig = ndig(thiserr, certerr)
ename = (parname + ' stderr' + ' '*14)[:14]
print(' | %s | % -.7e | % -.7e | %2i |' % (ename, thiserr, certerr, edig))
err_dig_min = min(err_dig_min, edig)
print(' |----------------+----------------+------------------+-------------------|')
sumsq = NISTdata['sum_squares']
try:
chi2 = myfit.chisqr
print(' | Sum of Squares | %.7e | %.7e | %2i |' % (chi2, sumsq,
ndig(chi2, sumsq)))
except:
pass
print(' |----------------+----------------+------------------+-------------------|')
if not myfit.errorbars:
print(' | * * * * COULD NOT ESTIMATE UNCERTAINTIES * * * * |')
err_dig_min = 0
if err_dig_min < 199:
print(' Worst agreement: %i digits for value, %i digits for error ' % (val_dig_min, err_dig_min))
else:
print(' Worst agreement: %i digits' % (val_dig_min))
return val_dig_min
def NIST_Test(DataSet, method='leastsq', start='start2', plot=True):
NISTdata = ReadNistData(DataSet)
resid, npar, dimx = Models[DataSet]
y = NISTdata['y']
x = NISTdata['x']
params = Parameters()
for i in range(npar):
pname = 'b%i' % (i+1)
cval = NISTdata['cert_values'][i]
cerr = NISTdata['cert_stderr'][i]
pval1 = NISTdata[start][i]
params.add(pname, value=pval1)
myfit = minimize(resid, params, method=method, args=(x,), kws={'y':y})
digs = Compare_NIST_Results(DataSet, myfit, params, NISTdata)
if plot and HASPYLAB:
fit = -resid(params, x, )
pylab.plot(x, y, 'ro')
pylab.plot(x, fit, 'k+-')
pylab.show()
return digs > 2
modelnames = []
ms = ''
for d in sorted(Models.keys()):
ms = ms + ' %s ' % d
if len(ms) > 55:
modelnames.append(ms)
ms = ' '
modelnames.append(ms)
modelnames = '\n'.join(modelnames)
usage = """
=== Test Fit to NIST StRD Models ===
usage:
------
python fit_NIST.py [options] Model Start
where Start is one of 'start1','start2' or 'cert', for different
starting values, and Model is one of
%s
if Model = 'all', all models and starting values will be run.
options:
--------
-m name of fitting method. One of:
leastsq, nelder, powell, lbfgsb, bfgs,
tnc, cobyla, slsqp, cg, newto-cg
leastsq (Levenberg-Marquardt) is the default
""" % modelnames
############################
parser = OptionParser(usage=usage, prog="fit-NIST.py")
parser.add_option("-m", "--method", dest="method", metavar='METH',
default='leastsq', help="set method name, default = 'leastsq'")
(opts, args) = parser.parse_args()
dset = ''
start = 'start2'
if len(args) > 0:
dset = args[0]
if len(args) > 1:
start = args[1]
if dset.lower() == 'all':
tpass = 0
tfail = 0
failures = []
dsets = sorted(Models.keys())
for dset in dsets:
for start in ('start1', 'start2', 'cert'):
if NIST_Test(dset, method=opts.method, start=start, plot=False):
tpass += 1
else:
tfail += 1
failures.append(" %s (starting at '%s')" % (dset, start))
print('--------------------------------------')
print(' Fit Method: %s ' % opts.method)
print(' Final Results: %i pass, %i fail.' % (tpass, tfail))
print(' Tests Failed for:\n %s' % '\n '.join(failures))
print('--------------------------------------')
elif dset not in Models:
print(usage)
else:
NIST_Test(dset, method=opts.method, start=start, plot=True)
|