1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
import os
from numpy import arctan, array, cos, exp, log, sin
from lmfit import Parameters
thisdir, thisfile = os.path.split(__file__)
NIST_DIR = os.path.join(thisdir, '..', 'NIST_STRD')
def read_params(params):
if isinstance(params, Parameters):
return [par.value for par in params.values()]
else:
return params
def Bennet5(b, x, y=0):
b = read_params(b)
return y - b[0] * (b[1]+x)**(-1/b[2])
def BoxBOD(b, x, y=0):
b = read_params(b)
return y - b[0]*(1-exp(-b[1]*x))
def Chwirut(b, x, y=0):
b = read_params(b)
return y - exp(-b[0]*x)/(b[1]+b[2]*x)
def DanWood(b, x, y=0):
b = read_params(b)
return y - b[0]*x**b[1]
def ENSO(b, x, y=0):
b = read_params(b)
pi = 3.141592653589793238462643383279
return y - b[0] + (b[1]*cos(2*pi*x/12) + b[2]*sin(2*pi*x/12) +
b[4]*cos(2*pi*x/b[3]) + b[5]*sin(2*pi*x/b[3]) +
b[7]*cos(2*pi*x/b[6]) + b[8]*sin(2*pi*x/b[6]))
def Eckerle4(b, x, y=0):
b = read_params(b)
return y - (b[0]/b[1]) * exp(-0.5*((x-b[2])/b[1])**2)
def Gauss(b, x, y=0):
b = read_params(b)
return y - b[0]*exp(-b[1]*x) + (b[2]*exp(-(x-b[3])**2 / b[4]**2) +
b[5]*exp(-(x-b[6])**2 / b[7]**2))
def Hahn1(b, x, y=0):
b = read_params(b)
return y - ((b[0]+b[1]*x+b[2]*x**2+b[3]*x**3) /
(1+b[4]*x+b[5]*x**2+b[6]*x**3))
def Kirby(b, x, y=0):
b = read_params(b)
return y - (b[0] + b[1]*x + b[2]*x**2) / (1 + b[3]*x + b[4]*x**2)
def Lanczos(b, x, y=0):
b = read_params(b)
return y - b[0]*exp(-b[1]*x) + b[2]*exp(-b[3]*x) + b[4]*exp(-b[5]*x)
def MGH09(b, x, y=0):
b = read_params(b)
return y - b[0]*(x**2+x*b[1]) / (x**2+x*b[2]+b[3])
def MGH10(b, x, y=0):
b = read_params(b)
return y - b[0] * exp(b[1]/(x+b[2]))
def MGH17(b, x, y=0):
b = read_params(b)
return y - b[0] + b[1]*exp(-x*b[3]) + b[2]*exp(-x*b[4])
def Misra1a(b, x, y=0):
b = read_params(b)
return y - b[0]*(1-exp(-b[1]*x))
def Misra1b(b, x, y=0):
b = read_params(b)
return y - b[0] * (1-(1+b[1]*x/2)**(-2))
def Misra1c(b, x, y=0):
b = read_params(b)
return y - b[0] * (1-(1+2*b[1]*x)**(-.5))
def Misra1d(b, x, y=0):
b = read_params(b)
return y - b[0]*b[1]*x*((1+b[1]*x)**(-1))
def Nelson(b, x, y=None):
b = read_params(b)
x1 = x[:, 0]
x2 = x[:, 1]
if y is None:
return - exp(b[0] - b[1]*x1 * exp(-b[2]*x2))
return log(y) - (b[0] - b[1]*x1 * exp(-b[2]*x2))
def Rat42(b, x, y=0):
b = read_params(b)
return y - b[0] / (1+exp(b[1]-b[2]*x))
def Rat43(b, x, y=0):
b = read_params(b)
return y - b[0] / ((1+exp(b[1]-b[2]*x))**(1/b[3]))
def Roszman1(b, x, y=0):
b = read_params(b)
pi = 3.141592653589793238462643383279
return y - b[0] - b[1]*x - arctan(b[2]/(x-b[3]))/pi
def Thurber(b, x, y=0):
b = read_params(b)
return y - ((b[0] + b[1]*x + b[2]*x**2 + b[3]*x**3) /
(1 + b[4]*x + b[5]*x**2 + b[6]*x**3))
# Model name fcn, #fitting params, dim of x
Models = {'Bennett5': (Bennet5, 3, 1),
'BoxBOD': (BoxBOD, 2, 1),
'Chwirut1': (Chwirut, 3, 1),
'Chwirut2': (Chwirut, 3, 1),
'DanWood': (DanWood, 2, 1),
'ENSO': (ENSO, 9, 1),
'Eckerle4': (Eckerle4, 3, 1),
'Gauss1': (Gauss, 8, 1),
'Gauss2': (Gauss, 8, 1),
'Gauss3': (Gauss, 8, 1),
'Hahn1': (Hahn1, 7, 1),
'Kirby2': (Kirby, 5, 1),
'Lanczos1': (Lanczos, 6, 1),
'Lanczos2': (Lanczos, 6, 1),
'Lanczos3': (Lanczos, 6, 1),
'MGH09': (MGH09, 4, 1),
'MGH10': (MGH10, 3, 1),
'MGH17': (MGH17, 5, 1),
'Misra1a': (Misra1a, 2, 1),
'Misra1b': (Misra1b, 2, 1),
'Misra1c': (Misra1c, 2, 1),
'Misra1d': (Misra1d, 2, 1),
'Nelson': (Nelson, 3, 2),
'Rat42': (Rat42, 3, 1),
'Rat43': (Rat43, 4, 1),
'Roszman1': (Roszman1, 4, 1),
'Thurber': (Thurber, 7, 1)}
def ReadNistData(dataset):
"""NIST STRD data is in a simple, fixed format with
line numbers being significant!
"""
finp = open(os.path.join(NIST_DIR, "%s.dat" % dataset), 'r')
lines = [l[:-1] for l in finp.readlines()]
finp.close()
ModelLines = lines[30:39]
ParamLines = lines[40:58]
DataLines = lines[60:]
words = ModelLines[1].strip().split()
nparams = int(words[0])
start1 = [0]*nparams
start2 = [0]*nparams
certval = [0]*nparams
certerr = [0]*nparams
for i, text in enumerate(ParamLines[:nparams]):
[s1, s2, val, err] = [float(x) for x in text.split('=')[1].split()]
start1[i] = s1
start2[i] = s2
certval[i] = val
certerr[i] = err
for t in ParamLines[nparams:]:
t = t.strip()
if ':' not in t:
continue
val = float(t.split(':')[1])
if t.startswith('Residual Sum of Squares'):
sum_squares = val
elif t.startswith('Residual Standard Deviation'):
std_dev = val
elif t.startswith('Degrees of Freedom'):
nfree = int(val)
elif t.startswith('Number of Observations'):
ndata = int(val)
y, x = [], []
for d in DataLines:
vals = [float(i) for i in d.strip().split()]
y.append(vals[0])
if len(vals) > 2:
x.append(vals[1:])
else:
x.append(vals[1])
y = array(y)
x = array(x)
out = {'y': y, 'x': x, 'nparams': nparams, 'ndata': ndata,
'nfree': nfree, 'start1': start1, 'start2': start2,
'sum_squares': sum_squares, 'std_dev': std_dev,
'cert': certval, 'cert_values': certval, 'cert_stderr': certerr}
return out
|