File: fit_NIST_scipy_lmdif.py

package info (click to toggle)
lmfit-py 0.9.11%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,908 kB
  • sloc: python: 10,121; makefile: 114; sh: 55
file content (143 lines) | stat: -rw-r--r-- 3,962 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python

"""This runs the same fits for the NIST StRD models but using
plain old scipy.optimize and relying on no code from lmfit.
In fact, it goes right down to using
  scipy.optimize._minpack._lmdif()

The tests only check best-fit value, not estimated uncertainties.
Currently, not all tests pass.
"""

import math
import sys

from scipy.optimize import _minpack

from NISTModels import Models, ReadNistData

try:
    import matplotlib.pyplot as plt
    HASPYLAB = True
except IOError:
    HASPYLAB = False


def ndig(a, b):
    return int(0.5 - math.log10(abs(abs(a)-abs(b)) / abs(b)))


def Compare_NIST_Results(DataSet, vals, NISTdata):
    print(' %s: ' % DataSet)
    print(' | Parameter Name |  Value Found   |  Certified Value | # Matching Digits |')
    print(' |----------------+----------------+------------------+-------------------|')

    val_dig_min = 1000
    err_dig_min = 1000
    for i in range(NISTdata['nparams']):
        parname = 'b%i' % (i+1)
        thisval = vals[i]
        certval = NISTdata['cert_values'][i]

        vdig = ndig(thisval, certval)

        pname = (parname + ' value ' + ' '*14)[:14]
        print(' | %s | % -.7e | % -.7e   | %2i                |' % (pname, thisval, certval, vdig))
        val_dig_min = min(val_dig_min, vdig)

    print(' |----------------+----------------+------------------+-------------------|')
    print(' Worst agreement: %i digits for value ' % (val_dig_min))
    return val_dig_min


def NIST_Test(DataSet, start='start2', plot=True):

    NISTdata = ReadNistData(DataSet)
    resid, npar, dimx = Models[DataSet]
    y = NISTdata['y']
    x = NISTdata['x']

    vals = []
    for i in range(npar):
        pname = 'b%i' % (i+1)
        cval = NISTdata['cert_values'][i]
        cerr = NISTdata['cert_stderr'][i]
        pval1 = NISTdata[start][i]
        vals.append(pval1)

    maxfev = 2500 * (npar + 1)
    factor = 100
    xtol = 1.e-14
    ftol = 1.e-14
    epsfcn = 1.e-13
    gtol = 1.e-14
    diag = None
    print(" Fit with: ", factor, xtol, ftol, gtol, epsfcn, diag)

    _best, out, ier = _minpack._lmdif(resid, vals, (x, y), 1,
                                      ftol, xtol, gtol,
                                      maxfev, epsfcn, factor, diag)

    digs = Compare_NIST_Results(DataSet, _best, NISTdata)

    if plot and HASPYLAB:
        fit = -resid(_best, x, )
        plt.plot(x, y, 'ro')
        plt.plot(x, fit, 'k+-')
        plt.show()

    return digs > 2


msg1 = """
----- NIST StRD Models -----
Select one of the Models listed below:
and a starting point of 'start1' or 'start2'
"""

msg2 = """
That is, use
    python fit_NIST_scipy_lmdif.py Bennett5 start1
or go through all models and starting points with:
    python fit_NIST_scipy_lmdif.py all
"""

if __name__ == '__main__':
    dset = 'Bennett5'
    start = 'start2'
    if len(sys.argv) < 2:
        print(msg1)
        out = ''
        for d in sorted(Models.keys()):
            out = out + ' %s ' % d
            if len(out) > 55:
                print(out)
                out = ''
        print(out)
        print(msg2)

        sys.exit()

    if len(sys.argv) > 1:
        dset = sys.argv[1]
    if len(sys.argv) > 2:
        start = sys.argv[2]
    if dset.lower() == 'all':
        tpass = 0
        tfail = 0
        failures = []
        dsets = sorted(Models.keys())
        for dset in dsets:
            for start in ('start1', 'start2'):
                if NIST_Test(dset, start=start, plot=False):
                    tpass += 1
                else:
                    tfail += 1
                    failures.append("   %s (starting at '%s')" % (dset, start))

        print('--------------------------------------')
        print(' Final Results: %i pass, %i fail.' % (tpass, tfail))
        print(' Tests Failed for:\n %s' % '\n '.join(failures))
        print('--------------------------------------')
    else:
        NIST_Test(dset, start=start, plot=True)