File: doc_model_with_iter_callback.py

package info (click to toggle)
lmfit-py 1.0.1-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,544 kB
  • sloc: python: 11,025; makefile: 114; sh: 43
file content (36 lines) | stat: -rw-r--r-- 970 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# <examples/doc_with_itercb.py>
import matplotlib.pyplot as plt
from numpy import linspace, random

from lmfit.lineshapes import gaussian
from lmfit.models import GaussianModel, LinearModel


def per_iteration(pars, iteration, resid, *args, **kws):
    print(" ITER ", iteration, ["%.5f" % p for p in pars.values()])


x = linspace(0., 20, 401)
y = gaussian(x, amplitude=24.56, center=7.6543, sigma=1.23)
y = y - .20*x + 3.333 + random.normal(scale=0.23, size=x.size)

mod = GaussianModel(prefix='peak_') + LinearModel(prefix='bkg_')

pars = mod.make_params()
pars['peak_amplitude'].value = 3.0
pars['peak_center'].value = 6.0
pars['peak_sigma'].value = 2.0
pars['bkg_intercept'].value = 0.0
pars['bkg_slope'].value = 0.0

out = mod.fit(y, pars, x=x, iter_cb=per_iteration)

plt.plot(x, y, 'b--')

print('Nfev = ', out.nfev)
print(out.fit_report())

plt.plot(x, out.best_fit, 'k-', label='best fit')
plt.legend(loc='best')
plt.show()
# <end examples/doc_with_itercb.py>